Chinese Optics Letters, 2021, 19 (1): 013602, Published Online: Dec. 18, 2020  

Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials Download: 831次

Author Affiliations
1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Beijing 100010, China
3 Graduate School, National University of Defense Technology, Changsha 410073, China
Copy Citation Text

Hao Sun, Jie Yang, Hengzhu Liu, Dan Wu, Xin Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2021, 19(1): 013602.

References

[1] J. J. Longdell, E. Fraval, M. J. Sellars, N. B. Manson. Stopped light with storage times greater than one second using EIT in a solid. Phys. Rev. Lett., 2005, 95: 063601.

[2] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 1999, 397: 594.

[3] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 1997, 50: 36.

[4] A. Kasapi, M. Jain, G. Y. Yin, S. E. Harris. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett., 1995, 74: 2447.

[5] Y. He, H. Zhou, Y. Jin, S. He. Plasmon induced transparency in a dielectric waveguide. Appl. Phys. Lett., 2011, 99: 043113.

[6] C. L. G. Alzar, M. A. G. Martinez, P. Nussenzveig. Classical analog of electromagnetically induced transparency. Am. J. Phys., 2002, 70: 37.

[7] X. Yang, M. Yu, D.-L. Kwong, C. W. Wong. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett., 2009, 102: 173902.

[8] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 2009, 102: 053901.

[9] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 2006, 96: 123901.

[10] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater., 2009, 8: 758.

[11] C. Liu, P. Liu, C. Yang, Y. Lin, H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 2019, 142: 354.

[12] H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, H. Lee. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 2019, 7: 1801205.

[13] M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, W. Zhang. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Opt. Express, 2017, 25: 19844.

[14] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 2012, 3: 1151.

[15] R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett., 2011, 99: 201107.

[16] X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, J. Li. Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett., 2013, 103: 021115.

[17] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, H. Altug. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci., 2011, 108: 11784.

[18] N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen. Three-dimensional plasmon rulers. Science, 2011, 332: 1407.

[19] Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, X. Zhang. Enhanced sensing performance by the plasmonic analogue of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett., 2010, 97: 114101.

[20] R. Taubert, M. Hentschel, J. Kästel, H. Giessen. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett., 2012, 12: 1367.

[21] R. Schittny, M. Kadic, T. Buckmann, M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science, 2014, 345: 427.

[22] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85: 3966.

[23] D. Lu, Z. Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun., 2012, 3: 1205.

[24] X. Tian, Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res., 2016, 4: 146.

[25] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater., 2018, 30: 1802760.

[26] M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, T. E. Murphy. Tunable terahertz hybrid metal–graphene plasmons. Nano Lett., 2015, 15: 7099.

[27] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, J.-B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 2018, 9: 4909.

[28] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon., 2008, 2: 295.

[29] Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, C. M. Soukoulis. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances. ACS Photon., 2018, 5: 1612.

[30] D. Shrekenhamer, J. Montoya, S. Krishna, W. J. Padilla. Four‐color Metamaterial absorber THz spatial light modulator. Adv. Opt. Mater., 2013, 1: 905.

[31] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta‐atoms. Adv. Mater., 2018, 30: 1802760.

[32] S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, H. Choi. Ultra-high modulation depth exceeding 2400% in optically controlled topological surface plasmons. Nat. Commun., 2015, 6: 8814.

[33] W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun., 2012, 3: 1274.

[34] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 2012, 487: 345.

[35] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater., 2019, 7: 1901050.

[36] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 2019, 7: 994.

[37] H. Sun, Y. Hu, Y. Tang, J. You, J. Zhou, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photon. Res., 2020, 8: 263.

[38] H. Sun, Y. Tang, Y. Hu, J. You, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Chin. Opt. Lett., 2020, 18.

[39] J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photon. Res., 2019, 7: 994.

[40] J. Zhou, C. Zhang, Q. Liu, J. You, X. Zheng, X. Cheng, T. Jiang. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics, 2020, 9.

[41] Y. Hu, T. Jiang, H. Sun, M. Tong, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photon. Rev., 2020, 14: 1900338.

[42] Y. Hu, J. You, M. Tong, X. Zheng, Z. Xu, X. Cheng, T. Jiang. Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. Adv. Sci., 2020, 7: 2000799.

[43] G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett., 2016, 16: 4838.

Hao Sun, Jie Yang, Hengzhu Liu, Dan Wu, Xin Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2021, 19(1): 013602.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!