激光与光电子学进展, 2017, 54 (1): 010003, 网络出版: 2017-01-17   

高平均功率固体激光器研究进展 下载: 1555次

Research Progress of High Average Power Solid-State Lasers
作者单位
中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
摘要
从激光器热效应出发, 由热效应的产生、危害以及解决方案入手, 分类详细阐述了薄片激光器、热容激光器、板条激光器以及光纤激光器的基本原理及其在高功率输出方面的进展。以激光**作为实际应用典例, 综述了近年来各国激光**的项目概况及进展, 在此基础上提出了高功率固体激光器的发展趋势, 即运行维护成本低、结构紧凑及无人机装载应用, 阐述了复合结构激光器的发展优势及其趋势。
Abstract
Based on the generation, harmfulness and solution of thermal effects of lasers, different kinds of lasers are illustrated in detail from the perspective of their principle and recent progress on high power, including thin disk lasers, heat capacity lasers, slab lasers and fiber lasers. As practical application on laser weapons, projects and progresses of laser weapons are classified. The development trend of high power solid-state lasers is proposed, which is low cost for operation and maintenance, compact structure and unmanned aerial vehicle (UAV) loading. Furthermore, the development advantage and the tendency of composite lasers are addressed.
参考文献

[1] 刘晓明, 葛悦涛. 高能激光武器的发展分析[J]. 战术导弹技术, 2014(1): 5-9.

    Liu Xiaoming, Ge Yuetao. Analysis of development of high energy laser weapon[J]. Tactical Missile Technology, 2014 (1): 5-9.

[2] 雷小丽, 孙 玲, 刘 洋, 等. 达信公司百千瓦陶瓷激光器技术综述[J]. 激光与红外, 2011, 41(9): 948-952.

    Lei Xiaoli, Sun Ling, Liu Yang, et al. Laser with 100 kW output power developed by the Textron company[J]. Laser & Infrared, 2011, 41(9): 948-952.

[3] Filgas D, Clatterbuck T, Cashen M, et al. Recent results for the Raytheon RELI program[C]. SPIE, 2012, 8381: 83810W.

[4] Yang K, Ba X, Li J, et al. Multilayer YAG/Yb∶YAG composite ceramic laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602705.

[5] Ikesue A, Aung Y L. Synthesis and performance of advanced ceramic lasers[J]. Journal of the American Ceramic Society, 2006, 89(6): 1936-1944.

[6] Beecher S J, Parsonage T L, Mackenzie J I, et al. Diode-end-pumped 1.2 W Yb∶Y2O3 planar waveguide laser[J]. Optics Express, 2014, 22(18): 22056-22061.

[7] Li J, Wu Y, Pan Y, et al. Laminar-structured YAG/Nd∶YAG/YAG transparent ceramics for solid-state lasers[J]. International Journal of Applied Ceramic Technology, 2008, 5(4): 360-364.

[8] Giesen A. Thin-disk solid state lasers[C]. SPIE, 2004, 5620: 112-127.

[9] La Fortune K N, Hurd R L, Johansson E M, et al. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser[C]. SPIE, 2004, 5333: 53-61.

[10] Mandl A E, Klimek D E, Hayes R. Zig-zag laser with improved liquid cooling: US7433376[P/OL]. (2008-10-07)[2016-07-15]. http://www.google.com/patents/US7433376.

[11] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186.

[12] Giesen A, Hügel H, Voss A, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 1994, 58(5): 365-372.

[13] Giesen A, Speiser A. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609.

[14] Kalisky Y Y, Kalisky O. The status of high-power lasers and their applications in the battlefield[J]. Optical Engineering, 2010, 49(9): 091003.

[15] Yuan H P, Lim Y X, Cheng J, et al. Near fundamental mode 1.1 kW Yb∶YAG thin-disk laser[J]. Optics Letters, 2013, 38(10): 1709-1711.

[16] Negel J P, Voss A, Ahmed M A, et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses[J]. Optics Letters, 2013, 38(24): 5442-5445.

[17] Klingebiel S, Schultze M, Teisset C Y, et al. 220 mJ ultrafast thin-disk regenerative amplifier[C]. Conference on Lasers and Electro-Optics: Science and Innovations, 2015, STu4O: STu4O.2.

[18] Albrecht G, George E V, Krupke W F, et al. High energy bursts from a solid state laser operated in the heat capacity limited regime: US5526372[P/OL]. (1996-06-11)[2016-07-15]. http://www.google.com/patents/US5526372.

[19] Yamamoto R M, Parker J M, Allen K L, et al. Evolution of a solid state laser[C]. SPIE, 2007, 6552: 655205.

[20] Hecht J. Photonic frontiers: laser weapons-pumping up the power[J]. Laser Focus World, 2007, 43(5): 18-21.

[21] Yamamoto B M, Bhachu B S, Cutter K P, et al. The use of large transparent ceramics in a high powered, diode pumped solid-state laser[C]. Proceedings of the Advanced Solid-State Photonics, 2008, WC: WC5.

[22] 刘 铭. 国外激光武器技术的发展[J]. 舰船电子工程, 2011(4): 18-23.

    Liu Ming. Development of the laser weapon technology abroad[J]. Ship Electronic Engineering, 2011(4): 18-23.

[23] 冯寒亮, 刘彦升, 韩 锋, 等. 美国海军舰载激光武器研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020004.

    Feng Hanliang, Liu Yansheng, Han Feng, et al. Progress on development of US naval shipborne laser weapons[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020004.

[24] Carroll D L.Overview of high energy lasers: past, present, and future [C]. Proceedings of the 42nd AIAA Plasmadynamics and Lasers Conference, 2011: 3102.

[25] Mackenzie J I. Dielectric solid-state planar waveguide lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 626-637.

[26] 刘 娇, 王君涛, 周唐建, 等. 高功率平面波导激光器研究进展及分析[J]. 强激光与粒子束, 2015, 27(6): 061015.

    Liu Jiao, Wang Juntao, Zhou Tangjian, et al. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 2015, 27(6): 061015.

[27] Mackenzie J I, Shepherd D P. End-pumped, passively Q-switched Yb∶YAG double-clad waveguide laser[J]. Optics Letters, 2002, 27(24): 2161-2163.

[28] Shepherd D P, Bonner C L, Brown C T A, et al. High-numerical-aperture, contact-bonded, planar waveguides for diode-bar-pumped lasers[J]. Optics Communications, 1999, 160(1-3): 47-50.

[29] Shepherd D P, Hettrick S J, Li C, et al. High-power planar dielectric waveguide lasers[J]. Journal of Physics D: Applied Physics, 2001, 34(16): 2420-2432.

[30] Filgas D. Asymmetric PWG with asymmetric cooling: US20160047982[P]. (2016-02-18)[2016-07-15]. http://google.com/patents/US20160047982.

[31] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32(1): 36-39.

[32] 王小林, 张汉伟, 于海龙, 等. 3.15 kW全光纤单模激光器[J]. 中国激光, 2015, 42(2): 0219003.

[33] 杨依枫, 沈 辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4): 0419004.

[34] 马 毅, 颜 宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9): 0901009.

    Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9): 0901009.

[35] 王小林, 张汉伟, 陶汝茂, 等. LD抽运主振荡功率放大结构4.1 kW全光纤激光器[J]. 中国激光, 2016, 43(5): 0502002.

    Wang Xiaolin, Zhang Hanwei, Tao Rumao, et al. Laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese J Lasers, 2016, 43(5): 0502002.

[36] 席淑桢, 毕忠安, 郑 葆, 等. 莱茵金属公司高能激光器新进展[J]. 国外坦克, 2014(8): 47-50.

甘啟俊, 姜本学, 张攀德, 姜益光, 陈水林, 张龙. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010003. Gan Qijun, Jiang Benxue, Zhang Pande, Jiang Yiguang, Chen Shuilin, Zhang Long. Research Progress of High Average Power Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!