发光学报, 2019, 40 (1): 39, 网络出版: 2019-01-19   

静电纺Ag/WO3复合纳米纤维及其光催化性能

Electrospinning Fabrication of Ag/WO3 Nanofibers and Photocatalytic Performance
作者单位
天津工业大学 理学院, 天津 300387
摘要
为了研究氧化钨(WO3)和银/氧化钨(Ag/WO3)纳米纤维光催化性能, 利用静电纺丝技术制备了WO3和Ag/WO3复合纳米纤维。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-Vis), 对样品的物相结构、形貌大小和紫外-可见漫反射光谱等进行了表征。在可见光照射下, 比较WO3和Ag/WO3纳米纤维光催化降解亚甲基蓝(MB)的性能, 结果表明, 在90 min时, Ag/WO3复合纤维光催化降解MB效率比WO3纤维高1.3倍, 从能带结构角度分析了Ag/WO3复合纤维光催化效率增强的原理。
Abstract
In order to study the photocatalytic effect of tungsten oxide(WO3) and silver/tungsten oxide(Ag/WO3) nanofibers. The WO3 and Ag/WO3 nanofibers were fabricated by electrospinning method. The crystal phase, morphology and ultraviolet-visible diffuse reflectance spectroscopy of the samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and UV-Vis spectrophotometer(UV-Vis). The photocatalytic degradation performance on Methyl Blue(MB) with WO3 and Ag/WO3 nanofibers was evaluated under UV-Vis light irradiation. The results demonstrate that the photocatalytic degradation efficiency on MB with Ag/WO3 nanofibers is 1.3 times higher than WO3 at 90 min. Based on the energy band structure, the principle of photocatalytic efficiency enhancement of Ag/WO3 composite fibers was analyzed.
参考文献

[1] WANG Y,DAI H X,DENG J G,et al.. 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B [J]. Solid State Sci., 2013,24:62-70.

[2] LAERA G,CHONG M N,JIN B,et al.. An integrated MBR-TiO2 photocatalysis process for the removal of Carbamazepine from simulated pharmaceutical industrial effluent [J]. Bioresour. Technol., 2011,102(13):7012-7015.

[3] LIU J L,ZHANG C L,MA B,et al.. Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst [J]. Nano Energy, 2017,38:271-280.

[4] MA G,CHEN Z,CHEN Z H,et al.. Constructing novel WO3/Fe(Ⅲ) nanofibers photocatalysts with enhanced visible-light-driven photocatalytic activity via interfacial charge transfer effect [J]. Mater. Today Energy, 2017,3:45-52.

[5] REGULACIO M D,HAN M Y. Multinary Ⅰ-Ⅲ-Ⅳ2 and I2-Ⅱ-Ⅳ-Ⅳ4 semiconductor nanostructures for photocatalytic applications [J]. Acc. Chem. Res., 2016,49(3):511-519.

[6] 杨悦,赵翠真,于晨光,等. Pt/TiO2复合纳米结构形貌控制及光催化动力学 [J]. 发光学报, 2014,35(12):1449-1454.

    YANG Y,ZHAO C Z,YU C G,et al.. Morphological control of TiO2 nanostructures and photocatalytic dynamics [J]. Chin. J. Lumin., 2014,35(12):1449-1454. (in Chinese)

[7] LIU Y,TIAN L H,TAN X Y,et al.. Synthesis,properties,and applications of black titanium dioxide nanomaterials [J]. Sci. Bull., 2017,62(6):431-441.

[8] 何祖明,夏咏梅,唐斌,等. ZnO/Cu2O异质结纳米阵列制备及光催化性能 [J]. 发光学报, 2017,38(7):936-943.

    HE Z M,XIA Y M,TANG B,et al.. Preparation and photocatalytic property of ZnO/Cu2O heterostructured nanorod arrays [J]. Chin. J. Lumin., 2017,38(7):936-943. (in Chinese)

[9] LEE H,KIM M,SOHN D,et al.. Electrospun tungsten trioxide nanofibers decorated with palladium oxide nanoparticles exhibiting enhanced photocatalytic activity [J]. RSC Adv., 2017,7(10):6108-6113.

[10] JANKY C,RAJESHWAR K,DE TACCONI N R,et al.. Tungsten-based oxide semiconductors for solar hydrogen generation [J]. Catal. Today, 2013,199:53-64.

[11] DONG P Y,YANG B R,LIU C,et al.. Highly enhanced photocatalytic activity of WO3 thin films loaded with Pt-Ag bimetallic alloy nanoparticles [J]. RSC Adv., 2017,7(2):947-956.

[12] XI G C,YE J H,MA Q,et al.. In situ growth of metal particles on 3D urchin-like WO3 nanostructures [J]. J. Am. Chem. Soc., 2012,134(15):6508-6511.

[13] SUN S M,WANG W Z,ZENG S Z,et al.. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation [J]. J. Hazard. Mater., 2010,178(1-3):427-433.

[14] ZHANG J,XU Q,FENG Z C,et al.. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J]. Angew. Chem. Int. Ed. Engl., 2008,47(9):1766-1769.

[15] CHEN X Y,ZHOU Y,LIU Q,et al.. Ultrathin,single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light [J]. ACS Appl. Mater. Interfaces, 2012,4(7):3372-3377.

[16] XU H,ZHAO H Z,XU Y G,et al.. Three-dimensionally ordered macroporous WO3 modified Ag3PO4 with enhanced visible light photocatalytic performance [J]. Ceram. Int., 2016,42(1):1392-1398.

[17] DONG P Y,HOU G H,XI X G,et al.. WO3-based photocatalysts:morphology control,activity enhancement and multifunctional applications [J]. Environ. Sci.: Nano, 2017,4(3):539-557.

[18] ZAYIM E O,LIU P,LEE S H,et al.. Mesoporous sol-gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates [J]. Solid State Ionics, 2003,165(1-4):65-72.

[19] BRIGOULEIX C,TOPART P,BRUNETON E,et al.. Roll-to-roll pulsed dc magnetron sputtering deposition of WO3 for electrochromic windows [J]. Electrochim. Acta, 2001,46(13-14):1931-1936.

[20] LI Y B,BANDO Y,GOLBERG D,et al.. WO3 nanorods/nanobelts synthesized via physical vapor deposition process [J]. Chem. Phys. Lett., 2003,367(1-2):214-218.

[21] BLACKMAN C S,PARKIN I P. Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties [J]. Chem. Mater., 2007,17(6):1583-1590.

[22] LENG J Y,XU X J,LV N,et al.. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning [J]. J. Colloid Interface Sci., 2011,356(1):54-57.

[23] WANG C H,SHAO C L,WANG L J,et al.. Electrospinning preparation,characterization and photocatalytic properties of Bi2O3 nanofibers [J]. J. Colloid Interface Sci., 2009,333(1):242-248.

[24] OFORI F A,SHEIKH F A,APPIAH-NTIAMOAH R,et al.. A simple method of electrospun tungsten trioxide nanofibers with enhanced visible-light photocatalytic activity [J]. Nano-Micro Lett., 2015,7(3):291-297.

[25] LU J C,LIU M C,ZHOU S Q,et al.. Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes [J]. Dyes Pigments, 2017,136:1-7.

魏利娟, 张海明, 曹静, 张晓慧, 张玥, 张飚. 静电纺Ag/WO3复合纳米纤维及其光催化性能[J]. 发光学报, 2019, 40(1): 39. WEI Li-juan, ZHANG Hai-ming, CAO Jing, ZHANG Xiao-hui, ZHANG Yue, ZHANG Biao. Electrospinning Fabrication of Ag/WO3 Nanofibers and Photocatalytic Performance[J]. Chinese Journal of Luminescence, 2019, 40(1): 39.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!