强激光与粒子束, 2014, 26 (12): 123005, 网络出版: 2015-01-08  

Q波段回旋行波管宽带高平均功率输出窗设计与热分析

Design and thermal analysis of broad bandwidth and high average power output window for Q-band gyro-TWT
作者单位
电子科技大学 物理电子学院, 四川 成都 610054
摘要
利用场匹配理论建立传输级联矩阵的方法对多层窗片结构输出窗进行研究,通过大量的数值计算给出Q波段回旋行波管一种新型中间风冷结构输出窗的参数,然后通过数值计算和HFSS仿真验证,该新型输出窗在46~50 GHz范围内,S11反射系数小于-20 dB。在此基础上进一步对该输出窗进行热分析,热分析表明: 新型输出窗窗片中心与边缘温差与传统输出窗相比大幅下降,热应力大大减小,提高了输出窗的功率容量。回旋行波管工作在TE01模式时,新型输出窗获得的最大饱和功率容量达到90 kW,与传统输出窗相比,功率容量提高了21.8 kW。
Abstract
The theory of field-matching to build scattering matrix method was established to analyse optimization calculation for the multiple-disk output window. Through a lot of numerical calculation program design, the structure parameters of Q-band gyro-TWT double disk output window were given. Then by high frequency software HFSS simulation verification, the wide-band output windows of Q-band with band width about 4 GHz when S11 parameter is less than -20 dB were attained. Finally, on the basis of the further research, using a new method of collaborative simulation, thermal analysis of software ANSYS and HFSS was carried out on the double-disk output window to research the thermal property and power capacity of the new type output window with wind cooling. The research shows that the temperature difference of the new type output window compared with traditional output windows dropped significantly and the power capacity increased by 21.8 kW to 90 kW saturation power capacity.
参考文献

[1] 罗勇, 李宏福, 徐勇, 等.低反射低吸收高平均功率输出窗的设计[J].强激光与粒子束,2004,16(11):1425-1428.(Luo Yong, Li Hongfu, Xu Yong, et al. RF windows of low reflectivity and absorption for high average power gyroklystrons. High Power Laser and Particle Beams, 2004,16(11):1425-1428)

[2] 郑志清,罗勇,蒋伟,等. 回旋行波管收集极的热分析[J]. 强激光与粒子束,2013,25(3): 721-726.(Zheng Zhiqing, Luo Yong, Jiang Wei, et al. Thermal analysis of gyrotron traveling-wave tube collector. High Power Laser and Particle Beams, 2013, 25(3): 721-726)

[3] 牛婧杨,王丽,罗勇,等.回旋行波管电子枪阴极热分析[J]. 强激光与粒子束,2013,25(2):446-450.(Niu Jingyang, Wang Li, Luo Yong, et al. Thermal analysis of electron gun cathode for gyrotron travelling wave tube. High Power Laser and Particle Beams, 2013,25(2): 446-450)

[4] 潘成胜,王丽,张杰,等. 回旋行波管低加热功率阴极的研究[J]. 强激光与粒子束,2013,25(11):2927-2930.(Pan Chengsheng, Wang Li, ZhangJie, et al. Low heater power of cathode for gyrotron travelling wave tube. High Power Laser and Particle Beams, 2013, 25(11): 2927-2930)

[5] 徐勇,罗勇,李宏福,等.高功率回旋行波管新型宽带输出窗的设计[J].红外与毫米波学报,2013, 32(2): 187-192.(Xu Yong, Luo Yong, Li Hongfu, et al. Design of a new type broad-band output window for high power gyro-TWT. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 32(2): 187-192.)

[6] Yan Ran, Luo Yong, Liu Guo, et al. design and experiment of a Q-band gyro-TWT loaded with lossy dielectric[J]. IEEE Trans on Electron Devices, 2012, 59(12): 3612-3617.

[7] Jiang Wei, Luo Yong, Yan Ran. Numerical design and optimization of a curved collector for a Q-band gyro-traveling wave tube[J]. IEEE Trans on Electron Devices, 2014, 61(1): 147 -150.

[8] Tang Yong, Luo Yong, Xu Yong, et al. Self-consistent nonlinear analysis and 3D particle-in-cell simulation of a W-band gyro-TWT[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35(10): 799-812.

[9] 韩勇,耿志辉,张世昌,等.不同材料回旋管输出窗的临界热耗散功率[J].强激光与粒子束,2011, 23(9): 2447-2452.(Han Yong, Geng Zhihui, Zhang Shichang, et al. Critical heat dissipation power of gyrotron windows of different materials. High Power Laser and Particle Beams, 2011, 23(9): 2447-2452)

[10] 姚列明. 微波管的热分析[D]. 成都:电子科技大学,2007.(Yao Lieming. Thermal analysis of microwave tube electron gun. Chengdu: University of Electronic Science and Technology of China, 2007)

[11] Jung S W, Lee H S, Jang K H, et al. Design studies of the Ku-band, wide-band Gyro-TWT amplifier[J]. Journal of the Korean Physical Society, 2014, 64(4): 537-542.

[12] Thumm M. Gyro-devices and their applications[C]//Proc IEEE International Vacuum Electronics Conference. 2011: 521-524.

[13] Song H H, McDermott D B, Hirata Y, et al. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier[J]. Phys Plasmas, 2004, 11(5): 2935-2941.

[14] Sirigiri J R, Shapiro M A, Temkin R J, et al. Experimental results from the MIT 140 GHz quasioptical gyro-TWT[J]. Phys Rev Lett, 2003, 90: 258302.

[15] Chu K R, Chen H Y, Hung C L, et al. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Trans on Plasma Sci, 1999, 27(2): 391-404.

[16] Yan Ran, Tang Yong, Luo Yong. Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide[J]. IEEE Trans on Electron Devices, 2014, 61(7): 2564-2569.

[17] Wang Efeng, Zeng Xu, Liu Bentian, et al. Experimental study of high-power gyrotron traveling-wave tube with periodic lossy material loading[J]. IEEE Trans on Plasma Sci, 2012, 40(7): 1846-1853.

[18] Du Chaohai, Chang Tsunhsu, Liu Pukun, et al. Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit[J]. IEEE Trans on Electron Devices, 2013, 60(7): 2388-2394.

[19] He W, Donaldson C R, Zhang L, et al. High power wideband gyrotron backward wave oscillator operating towards the terahertz region[J]. Physical Review Letters, 2013, 110: 165101.

[20] Alberti S, Ansermet J P, Avramides K A, et al. Experimental study from linear to chaotic regimes on a terahertz-frequency gyrotron oscillator[J]. Physics of Plasmas, 2012, 19: 123102.

陈辉, 王丽, 徐勇, 罗勇, 唐勇. Q波段回旋行波管宽带高平均功率输出窗设计与热分析[J]. 强激光与粒子束, 2014, 26(12): 123005. Chen Hui, Wang Li, Xu Yong, Luo Yong, Tang Yong. Design and thermal analysis of broad bandwidth and high average power output window for Q-band gyro-TWT[J]. High Power Laser and Particle Beams, 2014, 26(12): 123005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!