发光学报, 2016, 37 (9): 1090, 网络出版: 2016-11-23   

P3HT/PMMA双层聚合物电双稳器件的研究

Polymer Bistable Devices Based on Poly(3-hexylthiophene/Poly(methylmethacrylate) Bilayer Films
作者单位
北京交通大学光电子技术研究所 发光与光信息技术教育部重点实验室, 北京 100044
摘要
通过逐层旋涂的方法, 制备了P3HT(poly(3-hexylthiophene))与PMMA(poly(methylmethacrylate))双层器件, 并与二者的共混溶液制备的器件进行了性能对比。利用扫描电镜(SEM)表征了双层器件的横截面形貌; 利用电流-电压(I-V)以及电流-读取次数(I-t)测试, 测量了两种器件的开关比以及持续时间特性。其中, 双层器件具有更好的开关比, 可达1×103, 同时反复读写测试表明器件性能非常稳定。为了解释电双稳现象产生的机理, 对双层结构器件的电流-电压曲线进行了线性拟合, 利用器件的能级图进行分析, 得出了电荷在器件中的传输过程。研究结果表明, 可以通过电荷俘获释放理论解释P3HT/PMMA双层器件电双稳特性产生的机理。
Abstract
P3HT/PMMA bilayer device was fabricated through layer by layer spin-coating method and the device performance was greatly enhanced comparing with P3HT and PMMA single layer device. SEM image was taken to study the cross-section morphology of the bilayer film. The current-voltage (I-V) and current-repeatable times (I-t) measurements were taken to investigate the performance of the devices. The bilayer one has a better ON/OFF ratio about 1×103 and the device is quite stable. The fitting of I-V curves was utilized to analyze the charge transport process with the help of the diagram of the energy bands. The results show that the charge trapping-detrapping theory can be used to explain the operating mechanism of the bilayer device.
参考文献

[1] MA L P, PYO S, OUYANG J Y, et al.. Nonvolatile electrical bistability of organic/metal-nanocluster/organic system[J]. Appl. Phys. Lett., 2003, 82(9):1419.

[2] TONDELIER D, LMIMOUNI K, VUILLAUME D, et al.. Metal/organic/metal bistable memory devices[J]. Appl. Phys. Lett., 2004, 85(23):5763-5765.

[3] SCOTT J C, BOZANO L D. Nonvolatile memory elements based on organic materials[J]. Adv. Mater., 2007, 19(11):1452-1463.

[4] KO S H, YOO C H, KIM T W. Electrical bistabilities and memory stabilities of organic bistable devices utilizing C60 molecules embedded in a polymethyl methacylate matrix with an Al2O3 blocking layer[J]. J. Electrochem. Soc., 2012, 159(8):G93-G96.

[5] LIU G, JIN Z W, ZHANG Z G, et al.. Realization of nonvolatile organic memory device without using semiconductor[J]. Appl. Phys. Lett., 2014, 104(2):023303.

[6] LI J T, TANG A W, LI X, et al.. Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites[J]. Nanoscale Res. Lett., 2014, 9(1):128-1-5.

[7] RAMANA C V V, MOODLEY M K, KUMAR A B V K, et al.. Charge carrier transport mechanism based on stable low voltage organic bistable memory device[J]. J. Nanosci. Nanotechnol., 2015, 15(5):3934-3938.

[8] ICHIKAWA M, YAMAMURA K, JEON H G, et al.. Effects of volatile additives in solutions used to prepare polythiophene-based thin-film transistors[J]. J. Appl. Phys., 2011, 109(5):054504-1-6.

[9] MEENA J S, CHU M C, WU C S, et al.. Highly reliable Si3N4-HfO2 stacked heterostructure to fully flexible poly-(3-hexylthiophene) thin-film transistor[J]. Org. Electron., 2011, 12(8):1414-1421.

[10] BERNARDI M, GIULIANINI M, GROSSMAN J C. Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells[J]. ACS Nano, 2010, 4(11):6599-6606.

[11] KWON S, SHIM M, LEE J I, et al.. Ultrahigh density array of CdSe nanorods for CdSe/polymer hybrid solar cells: enhancement in short-circuit current density[J]. J. Mater. Chem., 2011, 21(33):12449-12453.

[12] 沙春芳. RR-P3HT和PCBM混合薄膜中的长寿命光激发态研究[J]. 光子学报, 2014, 43(5):0531003-1-6.

    SHA C F. Long lived photoexcitation in RR-P3HT and PCBM blended films[J]. Acta Photon. Sinica, 2014, 43(5):0531003-1-6. (in Chinese)

[13] 姜璐璐,刘海瑞,李梦菲,等. 胆甾液晶应用于P3HT∶PCBM聚合物光伏器件研究[J]. 液晶与显示, 2015, 30(4):596-601.

    JIANG L L, LIU H R, LI M F, et al.. Application of cholesteric liquid crystal in P3HT∶PCBM photovoltaic device[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4):596-601. (in Chinese)

[14] PARK K K, JUNG J H, KIM T W. Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate[J]. Appl. Phys. Lett., 2011, 98(19):193301-1-3.

[15] QIU L Z, LIM J A, WANG X H, et al.. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors[J]. Adv. Mater., 2008, 20(6):1141-1145.

[16] SONG W S, YANG H Y, YOO C H, et al.. Memory stabilities and mechanisms of organic bistable devices with a phase-separated poly(methylmethacrylate)/poly(3-hexylthiophene) hybrid layer[J]. Org. Electron., 2012, 13(11):2485-2488.

[17] LAI Y C, WANG Y X, HUANG Y C, et al.. Rewritable, moldable, and flexible sticker-type organic memory on arbitrary substrates[J]. Adv. Funct. Mater., 2014, 24(10):1430-1438.

[18] ZHANG L, YANG D, YANG S Y, et al.. Solution-processed P3HT-based photodetector with field-effect transistor configuration[J]. Appl. Phys. A, 2014, 116(3):1511-1516.

[19] YANG Y, OUYANG J, MA L, et al.. Electrical switching and bistability in organic/polymeric thin films and memory devices[J]. Adv. Funct. Mater., 2006, 16(8):1001-1014.

[20] WUNDERLICH W. Physical Constants of Poly(methyl methacrylate)[M]. London: John Wiley & Sons, Inc., 2003.

[21] LAMPERT M A, MARK P. Current Injection in Solids[M]. New York: Academic Press, 1970.

[22] KAO K C, HWANG W. Electrical Transport in Solids: with Particular Reference to Organic Semiconductors[M]. Oxford: Pergamon Press, 1981.

[23] LIU C Y, HOLMAN Z C, KORTSHAGEN U R. Hybrid solar cells from P3HT and silicon nanocrystals[J]. Nano Lett., 2009, 9(1):449-452.

[24] SON D I, YOU C H, KIM W T, et al.. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites[J]. Appl. Phys. Lett., 2009, 94(13):132103-1-3.

[25] HAGEN J A, LI W, STECKL A J, et al.. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer[J]. Appl. Phys. Lett., 2006, 88(17):171109-1-3.

彭博, 曹亚鹏, 胡煜峰, 滕枫. P3HT/PMMA双层聚合物电双稳器件的研究[J]. 发光学报, 2016, 37(9): 1090. PENG Bo, CAO Ya-peng, HU Yu-feng, TENG Feng. Polymer Bistable Devices Based on Poly(3-hexylthiophene/Poly(methylmethacrylate) Bilayer Films[J]. Chinese Journal of Luminescence, 2016, 37(9): 1090.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!