强激光与粒子束, 2005, 17 (7): 987, 网络出版: 2006-04-28   

355 nm脉冲激光在甲烷中的高效多波长拉曼转换

Efficient multi-wavelength Raman conversion in methane pumped by pulsed laser at 355 nm
作者单位
中国科学院大连化学物理研究所,分子反应动力学国家重点实验室,辽宁,大连,116023
摘要
研究了脉冲Nd:YAG激光(355 nm)泵浦的甲烷中多级Stokes光的产生和惰性气体对其转换效率的影响,其中一级和二级Stokes光的最大能量转换效率分别可达71%和38%(对应量子效率为79%和48%),大大高于已往文献报道的20%.在0.5 MPa下,可同时获得322 nm(3.6%),355 nm(24.5%),396 nm(24.3%),448 nm(22.3%)和515 nm(9.3%)的多波长输出.甲烷压力对多级Stokes转换有显著影响:高气压利于产生高效的一级Stokes光,而低气压则适合于高级Stokes光的产生.根据级联受激拉曼散射(SRS)和四波混频(FWM)理论对实验结果进行了分析,结果表明甲烷中高级Stokes光的产生是SRS和FWM协同作用的结果.加入的氦气增强了甲烷中Stokes光的转换效率,而氩气的作用恰恰相反,利用热透镜效应可以很好地解释这些现象。
Abstract
Multi-order Stokes generation in pure CH4 and its He/Ar mixture pumped by a pulsed Nd:YAG laser at 355 nm were investigated. Maximum energy conversion efficiencies as high as 71% and 38% (i.e. quantum efficiency of 79% and 48%), much higher than those reported in previous literatures, were attained under 2.5 MPa and 1 MPa for the first and second Stokes respectively. Under 0.5 MPa CH4, significant multi-wavelength outputs could be obtained with energy distribution of 3.6% at 322 nm, 24.5% at 355 nm, 24.3% at 396 nm, 22.3% at 448 nm, and 9.3% at 515 nm. High-pressure CH4 was good for highly efficient first Stokes conversion, while low-pressure CH4 was suitable for higher order Stokes generation. The experimental results were analyzed in detail in terms of cascade stimulated Raman scattering and four-wave mixing, indicating that such efficient high-order Stokes generation in CH4 should be the result of their cooperative effect. The addition of He enhanced the Stokes conversion efficiencies, while Ar acted adversely,which could be explained by the thermal lens effects.
参考文献

[1] Chu Z, Singh U N, Wilkerson T D. Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements[J]. Appl Opt, 1991, 30(30):4350-4357.

[2] Telle J M, Wenzel R G. High-efficiency first-Stokes generation from XeF-pumped CH4[J]. J Opt Soc Am B, 1986, 3(10): 1489-1491.

[3] Schoulepnikoff L, Mitev V, Simeonov V, et al. Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers[J]. Appl Opt, 1997, 36(21):5026-5043.

[4] 陶宗明,张寅超,吕勇辉,等. Nd:YAG四倍频激光抽运甲烷后的受激拉曼效应及其物理机制分析[J]. 物理学报,2004,53(8):2589-2594.
Tao Z M, Zhang Y C, Lü Y H, et al. Effect of stimulated Raman scattering pumped by fourth harmonic Nd:YAG laser in methane and analysis of its physical processes. Acta Physica Sinica, 2004, 53(8):2589-2594.

[5] Sentrayan K, Major L, Michael A, et al. Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser[J]. Appl Phys B, 1992, 55(4):311-318.

[6] Choi Y S. Asymmetry of the forward and backward Raman gain coefficient at 1.54 μm in methane[J]. Appl Opt, 2001, 40(12):1925-1930.

[7] Murray J R, Goldhar J, Sz?ke A. Backward Raman gain measurements for KrF laser radiation scattered by CH4[J]. Appl Phys Lett, 1978, 32(9):551-553.

[8] 董景星,楼祺洪,宁东,等. 氦氢混合气体中受激拉曼散射的脉宽特性[J]. 强激光与粒子束,1996,8(4):607-610.
Dong J X, Lou Q H, Ning D, et al. Narrowing of stimulated Raman scattering pulse duration in He/H2 gas mixtures. High Power Laser and Particle Beams, 1996, 8(4):607-610.

[9] Taira Y, Ide K, Takuma H. Accurate measurement of the pressure broadening of the ν1 Raman line of CH4 in the 1~50 atm region by inverse Raman spectroscopy[J]. Chem Phys Lett, 1982, 91(4):299-302.

[10] Bjorklund G C. Effects of focusing on third-order nonlinear processes in isotropic media[J]. IEEE J Quantum Electronics, 1975, 11(6):287-296.

[11] Fox J J, Tate F G H. Refractivity of all gases and vapors and of elementary substances in the isotropic solid and liquid states[A]. International Critical Tables of Numerical Data, Physics, Chemistry and Technology (Vol VII)[C]. New York: McGraw-Hill, 1930. 1-12.

[12] Bartels J, Borchers H, Hausen H, et al. Landolt-Bornstein Zahlenwert und Funktionen[M]. Berlin: Springer-Verlag, 1962.

[13] Bailey R T, Cruickshank F R, Pugh D, et al. Pulsed source thermal lens[J]. J Chem Soc, Faraday Trans. II, 1980, 76(6):633-647.

[14] Papayannis A D, Tsikrikas G N, Serafetinides A A. Generation of UV and VIS laser light by stimulated Raman scattering in H2, D2, and H2/He using a pulsed Nd:YAG laser at 355 nm[J]. Appl Phys B, 1998, 67(5):563-568.

[15] 时钧,汪家鼎,余国琮,等. 化学工程手册[M]. 北京:化学工业出版社,1996. 141-145.
Shi J, Wang J D, Yu G C, et al. Chemical engineering handbook. Beijing: Chemical Industry Press, 1996. 141-145.

[16] Grant W B, Browell E V, Higdon N S, et al. Raman shifting of KrF laser-radiation for tropospheric ozone measurements[J]. Appl Opt, 1991, 30(18):2628-2633.

冷静, 沙国河, 杨何平, 花晓清, 张存浩. 355 nm脉冲激光在甲烷中的高效多波长拉曼转换[J]. 强激光与粒子束, 2005, 17(7): 987. LENG Jing, SHA Guo-he, YANG He-ping, HUA Xiao-qing, ZHANG Cun-hao. Efficient multi-wavelength Raman conversion in methane pumped by pulsed laser at 355 nm[J]. High Power Laser and Particle Beams, 2005, 17(7): 987.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!