激光与光电子学进展, 2017, 54 (12): 122701, 网络出版: 2017-12-11  

Demkov-Kunike模型的高保真度超绝热量子驱动

High-Fidelity Superadiabatic Quantum Driving in Demkov-Kunike Model
作者单位
西北师范大学物理与电子工程学院甘肃省原子分子物理与功能材料重点实验室, 甘肃 兰州 730070
摘要
高保真度量子态的制备是量子精确操控的基本要求。利用超绝热技术,通过引入一个附加场强度参数,研究了Demkov-Kunike模型的高保真度超绝热量子驱动问题,讨论了附加场强度参数、啁啾参数、耦合强度以及静态失谐参数对Demkov-Kunike模型绝热过程的影响。研究结果表明,系统的保真度与附加场强度参数密切相关。当附加场强度参数为适当值时,无论对于无静态失谐情况还是存在静态失谐情况都有很好的参数稳健性,在所有的参数范围内能够抑制跃迁概率的振荡,实现高保真度、快速以及超绝热量子驱动。
Abstract
The preparation of high-fidelity quantum state is a basic requirement for precise control of quantum system. In this paper, by using superadiabatic technology and introducing an auxiliary field strength parameter, we investigate the problem of high-fidelity superadiabatic quantum driving in the Demkov-Kunike model, and discuss the influence of the auxiliary field strength parameters, chirp parameters, coupling strength and static detuning parameters on the adiabatic process of the Demkov-Kunike model. The results show that the fidelity of the system is closely related to the auxiliary field strength parameters. When the appropriate auxiliary field parameters are selected, the system has good parametric robustness, no matter the system is at no static detuning case or static detuning case. The oscillation of transition probability can be suppressed in all parameter ranges. The system can achieve high-fidelity, fast, and superadiabatic quantum driving.
参考文献

[1] Brif C, Chakrabarti R, Rabitz H. Control of quantum phenomena: past, present and future[J]. New Jounal of Physics, 2010, 12(7): 075008.

[2] de Melo C S. When fermions become bosons: pairing in ultracold gases[J]. Physics Today, 2008, 61(10): 45-51.

[3] Saberi H, Opatrńy T, Mlmer K, et al. Adiabatic tracking of quantum many-body dynamics[J]. Phys Rev A, 2014, 90(6): 060301(R).

[4] Torosov B T, Guérin S, Vitanov N V. High-fidelity adiabatic passage by composite sequences of chirped pulses[J]. Phys Rev Lett, 2011, 106(23): 233001.

[5] Masuda S, Nakamura K. Acceleration of adiabatic quantum dynamics in electromagnetic fields[J]. Phys Rev A, 2011, 84(4): 043434.

[6] Dou F Q, Cao H, Fu L B, et al. High-fidelity composite adiabatic passage in nonlinear two-level systems[J]. Phys Rev A, 2016, 93(4): 043419.

[7] 胡靖宇, 毛腾飞, 豆福全, 等. 复合绝热通道技术在谐相互作用调制的Landau-Zener模型中的应用[J]. 物理学报, 2013, 62(17): 170303.

    Hu Jingyu, Mao Tengfei, Dou Fuquan, et al. Application of the composite adiabatic passage technique in the Landau-Zener model with harmonic interaction modulation[J]. Acta Physica Sinica, 2013, 62(17): 170303.

[8] Cao X X, Zhuang J, Ning X J, et al. Accelerating an adiabatic process by nonlinear sweeping[J]. Chin Phys B, 2013, 22(9): 090310.

[9] Chen X, Lizuain I, Ruschhaupt A, et al. Shortcut to adiabatic passage in two-and three-level atoms[J]. Phys Rev Lett, 2010, 105(12): 123003.

[10] Du Y X, Liang Z T, Li Y C, et al. Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms[J]. Nat Commun, 2016, 7: 12479.

[11] Funo K, Zhang J N, Chatou C, et al. Universal work fluctuations during shortcuts to adiabaticity by counterdiabatic driving[J]. Phys Rev Lett, 2017, 118(10): 100602.

[12] Chen Y H, Xia Y, Wu Q C, et al. Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms[J]. Phys Rev A, 2016, 93(5): 052109.

[13] 汪利平, 孟硕, 谭凤玲, 等. 不对称双量子阱中电子布居转移的相干控制研究[J]. 光学学报, 2016, 36(9): 0927002.

    Wang Liping, Meng Shuo, Tan Fengling, et al. Coherent control of population transfer in asymmetric double quantum well[J]. Acta Optica Sinica, 2016, 36(9): 0927002.

[14] Masuda S, Rice S A. Selective vibrational population transfer using combined stimulated Raman adiabatic passage and counter-diabatic fields[J]. J Phys Chem C, 2014, 119(26): 14513-14523.

[15] Vandermause J, Ramanathan C. Superadiabatic control of quantum operations[J]. Phys Rev A, 2016, 93(5): 052329.

[16] Demirplak M, Rice S A. Adiabatic population transfer with control fields[J]. J Phys Chem A, 2003, 107(46): 9937-9945.

[17] Agundez R R, Hill C D, Hollenberg L C L, et al. Superadiabatic quantum state transfer in spin chains[J]. Phys Rev A, 2017, 95(1): 012317.

[18] Song X K, Ai Q, Qiu J, et al. Physically feasible three-level transitionless quantum driving with multiple Schrdinger dynamics[J]. Phys Rev A, 2016, 93(5): 052324.

[19] Bason M G, Viteau M, Malossi N, et al. High-fidelity quantum driving[J]. Nat Phys, 2012, 8: 147-152.

[20] Malossi N, Bason M G, Viteau M, et al. Quantum driving protocols for a two-level system: from generalized Landau-Zener sweeps to transitionless control[J]. Phys Rev A, 2013, 87(1): 012116.

[21] Dou F Q, Liu J, Fu L B. High-fidelity superadiabatic population transfer of a two-level system with a linearly chirped Gaussian pulse[J]. Europhysics Letters, 2017, 116(6): 60014.

[22] Zhang J, Shim J H, Niemeyer I, et al. Experimental implementation of assisted quantum adiabatic passage in a single spin[J]. Phys Rev Lett, 2013, 110(24): 240501.

[23] Liang Z T, Yue X, Lü Q, et al. Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers[J]. Phys Rev A, 2016, 93(4): 040305.

[24] Zhou B B, Baksic A, Ribeiro H, et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system[J]. Nat Phys, 2017, 13: 330-334.

[25] 卢道明. 双光子过程耦合腔系统中的纠缠特性[J]. 光学学报, 2012, 32(2): 0227001.

    Lu Daoming. Entanglement properties in the system of atoms interacting with coupled cavities via a two-photonhopping interaction[J]. Acta Optica Sinica, 2012, 32(2): 0227001.

[26] 李斌, 萨楚尔夫, 郭彩丽. 两个二能级原子与Pólya态光场相互作用系统的量子特性[J]. 激光与光电子学进展, 2016, 53(3): 032702.

    Li Bin, Sachuerfu, Guo Caili. Quantum properties in a system of two two-level atoms interacting with Pólya state light field[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032702.

[27] Suominen K A, Garraway B M. Population transfer in a level-crossing model with two time scales[J]. Phys Rev A, 1992, 45(1): 374-386.

[28] Simeonov L S, Vitanov N V. Exactly solvable two-state quantum model for a pulse of hyperbolic-tangent shape[J]. Phys Rev A, 2014, 89(4): 043411.

[29] Lacour X, Guérin S, Yatsenko L P, et al. Uniform analytic description of dephasing effects in two-state transitions[J]. Phys Rev A, 2007, 75(3): 033417.

[30] 叶地发, 傅立斌, 赵鸿, 等. 非线性Rosen-Zener跃迁[J]. 物理学报, 2007, 56(9): 5071-5076.

    Ye Difa, Fu Libin, Zhao Hong, et al. Nonliner Rosen-Zener transition[J]. Acta Physica Sinica, 2007, 56(9): 5071-5076.

[31] Torosov B T, Vitanov N V. Coherent control of a quantum transition by a phase jump[J]. Phys Rev A, 2007, 76(5): 053404.

[32] Ishkhanyan A M, Joulakian B, Suominen K A. Two strong nonlinearity regimes in cold molecule formation[J]. Eur Phys J D, 2008, 48(3): 397-404.

[33] 豆福全, 郑伟强. 两能级系统中高保真度布居数反转[J]. 科学通报, 2016, 61(20): 2309-2315.

    Dou Fuquan, Zheng Weiqiang. High-fidelity population inversion of two-level system[J]. Chin Sci Bull, 2016, 61(20): 2309-2315 .

[34] Paul K, Sarma A K. Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme[J]. Phys Rev A, 2015, 91(5): 053406.

[35] Chen Y H, Shi Z C, Song J, et al. Optimal shortcut approach based on an easily obtained intermediate Hamiltonian[J]. Phys Rev A, 2017, 95(6): 062319.

冯平, 孙建安, 王文元, 豆福全. Demkov-Kunike模型的高保真度超绝热量子驱动[J]. 激光与光电子学进展, 2017, 54(12): 122701. Feng Ping, Sun Jian′an, Wang Wenyuan, Dou Fuquan. High-Fidelity Superadiabatic Quantum Driving in Demkov-Kunike Model[J]. Laser & Optoelectronics Progress, 2017, 54(12): 122701.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!