光学 精密工程, 2014, 22 (10): 2611, 网络出版: 2014-11-06   

流速/温度共采的光纤布拉格光栅涡轮流速传感器

FBG turbine flow rate sensor for acquiring flow rate and temperature simultaneously
作者单位
山东大学 控制科学与工程学院,山东 济南 250061
摘要
为实现敏感元件仅为单一光纤光栅流速传感器的多参数同时测量,提出了一种流速/温度共采的光纤布拉格光栅(FBG)涡轮流速传感器。该传感器通过涡轮实现流体冲击力对光纤光栅中心波长的频率调制,解决光纤光栅温度应变的交叉敏感,理论计算得到其流速检测灵敏度为2.91·10-2 m/(s·Hz-1)。为测试传感器的性能,搭建了传感器测试系统,并选取光纤动态解调仪解调的光纤光栅中心波长动态信号作为试验原始数据。应用快速傅里叶变换(FFT)法分析试验数据,得到传感器流速的检测下限为0.541 7 m/s,检测灵敏度为2.57·10-2 m/(s·Hz-1),检测精度为25 mm/s,略小于理论计算值,其主要原因在于圆管内流体的流速并非均匀分布的匀速运动,管道内壁对流体具有一定的黏滞力。应用经验模式分解分析原始数据获取其趋势项信号,得到该传感器的温度灵敏度为10.6 pm/℃,检测精度为0.5 ℃。
Abstract
To measure multi-parameters at the same time by a flow sensor with only one Fiber Bragg Grating(FBG) as the sensitive element, a novel FBG turbine flow rate sensor was proposed. This sensor uses a power element turbine to achieve a fluid impact force to modulate the frequency of FBG center wavelength and to overcome the cross-talking of temperature and strain effectively. The theoretical calculation of flow rate detection sensitivity is 2.91·10-2 m/(s·Hz-1). To measure the properties of this sensor, a sensor measurement system was established, meanwhile the FBG center wavelength dynamic signal demodulated by a fiber dynamic demodulator was chosen to be the experiment origin data. A Fast Fourier Transform(FFT) was used to analyze the experiment data of the sensor. The result shows that the flower limit of flow rate is 0.541 7 m/s and the flow rate detection sensitivity is 2.57·10-2 m/(s·Hz-1) with the detection accuracy of 25 mm/s, which are lower than the calculated values. It suggests that the main reason of these phenomena is that the flow rate of fluid in the transmission pipeline is not an even distributed uniform motion and the pipeline inner wall has some viscous forces on the fluid. Empirical mode decomposition was used to analyze the original signal. The experiment data indicate that the temperature detection sensitivity of this sensor is 10.6 pm/℃ and detection accuracy is 0.5 ℃.
参考文献

[1] 吴入军,郑百林,贺鹏飞,等.埋入式光纤布拉格光栅传感器封装结构对测量应变的影响[J].光学精密工程,2014,1(22):24-30.

    WU R J, ZHENG B L, HE P F, et al.. Influence of encapsulation structures for embedded fiber-optic Bragg grating sensors on strain measurement[J].Opt. Precision Eng., 2014,1(22):24-30. (in Chinese)

[2] 李红民,高宏伟,刘波,等.一种新型的光纤光栅涡街流量传感器[J].传感技术学报,2006,19(4):1195-1197.

    LI H M, GAO H W, LIU B, et al.. A novel fiber Bragg grating flow meter [J]. Chinese Journal of Sensors and Actuator, 2006,19(4):1195-1197. (in Chinese)

[3] 陈建军,张伟刚,涂勤昌,等.基于光纤光栅的高灵敏度流速传感器[J].光学学报,2006,8(26):1136-1139.

    CHEN J J, ZHANG W G, TU Q CH, et al.. High sensitivity flow velocity sensor based on fiber grating [J]. Acta Optica Sincia, 2006,8(26):1136-1139. (in Chinese)

[4] ZHAO Y, CHEN K,YANG J. Novel target type flow meter based on a differential fiber Bragg grating sensor [J]. Measurement,2005,38(3):230-235.

[5] 王正方,王 静,隋青美,等.靶式FBG流速传感器在裂隙水模型试验中的应用[J].吉林大学学报:工学版,2012,6(42): 1569-1575.

    WANG ZH F, WANG J, SUI Q M, et al.. Application of target-type FBG flow velocity sensor in fracture water model test[J]. Journal of Jilin University:Engineering and Technology Edition, 2012,6(42):1569-1575 .(in Chinese)

[6] WANG Y P, HUANG X Q, WANG M. Temperature- and strain- independent torsion sensor utilizing polarization-dependent loss of Hi-Bi FBGs[J]. Electronics Letters,2013,13(49): 840-841.

[7] ZHANG Q,ZHU T,ZHANG J D, et al.. Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature[J]. IEEE Photonics Technology Letters,2013,25(18):1751-1753.

[8] Y.M·R.M.G. Multi-functional measurement using a single FBG sensor [J]. Experimental Mechanics,2011(51):1489-1498.

[9] 丁腾蛟.基于悬臂梁结构的大量程光纤Bragg光栅位移传感器[D].武汉:武汉理工大学,2012,6.

    DING T J.Large Range Fiber Bragg Grating Displacement Sensor Based on Cantilever Structure [D]. Wuhan:Wuhan University of Technology, 2012, 6.(in Chinese)

[10] 胡海岩.机械振动基础[M]. 北京:北京航空航天大学出版社,2004: 131-132.

    HU H Y. Foundation of Mechanical Vibration[M]. Beijing: Beihang University Press, 2004:131-132. (in Chinese)

[11] 张三慧.大学基础物理学[M]. 北京:清华大学出版社,2007,3.

    ZHANG S H. University Fundamental Physics[M]. Beijing: Tsinghua University Press, 2007,3. (in Chinese)

[12] 朱勇,王振翀.基于快速傅里叶变换直流分量的土壤电阻率测量[J].光学精密工程,2013,1(21):115-123.

    ZHU Y, WANG ZH C. Measurement of soil resistively based on FFT DC component [J]. Opt. Precision Eng., 2013,1(21):115-123 .(in Chinese)

[13] 郝研,王太勇,万剑,等.基于经验模式分解和广义维数的机械故障诊断[J].吉林大学学报:工学版,2012(2):392-396.

    HAO Y, WANG T Y, WAN J, et al.. Mechanical fault diagnosis based on empirical mode decomposition and generalized dimension [J]. Journal of Jilin University:Engineering and Technology Edition,2012(2):392-396.(in Chinese)

[14] LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural response[J]. Bulletin of the Seismological Society of American,2001,91(5):1339-1352.

[15] MARCUS D, TORSTEN S. Performance and limitations of the Hilbert-Huang transformation(HHT) with an application to irregular water waves [J]. Ocean Engineering, 2004, 31(14-15):1783-1834 .

[16] HUANG N E, SHEN Z, LONG S R, et al.. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998,454: 903-995.

[17] 孔珑.工程流体力学[M].北京:中国电力出版社,2007:106-107.

    KONG L. Engineering Fluid Mechanics [M]. Beijing:China Electric Power Press,2007:106-107. (in Chinese)

蒋善超, 隋青美, 王静, 王正方, 叶青霖. 流速/温度共采的光纤布拉格光栅涡轮流速传感器[J]. 光学 精密工程, 2014, 22(10): 2611. JIANG Shan-chao, SUI Qing-mei, WANG Jing, WANG Zheng-fang, YE Qing-lin. FBG turbine flow rate sensor for acquiring flow rate and temperature simultaneously[J]. Optics and Precision Engineering, 2014, 22(10): 2611.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!