红外与激光工程, 2015, 44 (6): 1923, 网络出版: 2016-01-26   

地磁坐标系下变姿态空间相机的外热流计算

Calculation of external heat fluxes on space camera with changing attitudes frequently in Geomagnetic Coordinate system
作者单位
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
摘要
为了提供准确的空间相机外热流数据,提出一种在地磁坐标系下进行频繁姿态变换的空间相机瞬态外热流计算方法。首先,确定了在J2000坐标系下太阳—地球的相对位置及太阳辐照强度;其次,计算相机不同位置的地磁纬度,并采用二分法得到相机在轨运行时进出高磁纬地区(L≥60°)的轨道时间;然后,依据其地磁纬度,确定相机不同时刻下的在轨姿态。最后,采用蒙特卡洛法(MCM)计算相机的各环境映射面的轨道视角系数,进而得出整轨周期内各环境映射面接受的瞬时外热流。此方法与IDEAS/TMG软件的外热流结果能够较好的吻合。与姿态稳定的相机相比,空间相机姿态频繁变化会导致外热流数值的明显波动。尤其是入光口所在的+Z面,其波动范围为0~1 245.4 W/m2。
Abstract
In order to provide the external heat flux of space camera accurately, a method was proposed to calculate the instantaneous external heat fluxes of a space camera with changing attitudes frequently depending on its position in the Geomagnetic Coordinate system(MAG). First, in J2000 Coordinate the relative position of the sun, earth and radiation intensity of sun was calculated. Second, geomagnetic latitudes of a camera and orbital times when camera entered or exited from high geomagnetic latitudes(L≥60°) were calculated. Then, the camera′s attitudes were ensured with geomagnetic latitudes. Finally, orbital view factors of six mapping planes were achieved by the Monte Carlo Method(MCM)and the instantaneous external heat fluxes was obtained during the on-orbit time. The external heat fluxes of this paper were consentaneous with the software IDEAS/TMG. Compared with the stable attitude camera, the attitude varieties of the camera take a relatively strong influence on the external heat flux, especially for the +Z-direction where optical entrance is located. The fluctuation range of the +Z-direction external heat flux is about 0-1 245.4 W/m2.
参考文献

[1] Li Junlan, Yan Shaoze, Cai Renyu. Thermal analysis of composite solar array subjected to space heat flux[J]. Aerospace Science and Technology, 2013, 27: 84-94.

[2] 秦文波, 程惠尔.空间实验室尾部对接机构变轨期间热分析研究[J].宇航学报, 2009, 30(3): 1276-1281.

    Qin Wenbo, Cheng Huier. Thermal analysis of docking mechanism at the tail of space laboratory during orbit changing[J]. Journal of Astronautics, 2009, 30(3): 1276-1281. (in Chinese)

[3] 翁建华, 潘增富, 闵桂荣.空间任意形状凸面的轨道空间外热流计算方法[J].中国空间科学技术, 1994, 2: 11-18.

    Weng Jianhua, Pan Zengfu, Min Guirong. A method of calculating external heat fluxes on arbitrary shaped convex surface of spacecraft[J]. Chinese Space Science and Technology, 1994, 2: 11-18. (in Chinese)

[4] 宁献文, 张加迅, 江海, 等.倾斜轨道六面体卫星极端外热流解析模型[J].宇航学报, 2008, 29(3): 754-759.

    Ning Xianwen, Zhang Jiaxun, Jiang Hai, et al. Extreme external heat flux analytical model for inclined-orbit hexahedral[J]. Journal of Astronautics, 2008, 29(3): 754-759. (in Chinese)

[5] 张涛, 孙冰. 计算近地轨道航天器空间外热流的RUD方法[J]. 宇航学报, 2009, 30(1): 338-343.

    Zhang Tao, Sun Bing. Numerical computation of external heat flux of low earth orbit spacecraft by RUD[J]. Journal of Astronautics, 2009, 30(1): 338-343. (in Chinese)

[6] 孙创, 夏新林, 戴贵龙.飞行器复杂外结构的环境热流计算方法[J].宇航学报, 2011, 32(3): 683-687.

    Sun Chuang, Xia Xinlin, Dai Guilong. A calculational method for environment heat flux on spacecraft with complicated structure[J]. Journal of Astronautics, 2011, 32(3): 683-687. (in Chinese)

[7] 郗晓宁, 王威. 近地航天器轨道基础[M]. 长沙: 国防科技大学出版社, 2003.

    Xi Xiaoning, Wang Wei. Fundamentals of Near-earth Spacecraft Orbit[M]. Changsha: National University of Defense Technology Press, 2003. (in Chinese)

[8] Finlay C C, Maus S, Beggan C D, et al. International geomagnetic reference field: the eleventh generation[J]. Geophysical Journal International, 2010, 183: 1216-1230.

[9] 谈和平, 夏新林, 刘林华, 等.红外辐射特性与传输的数值计算[M].哈尔滨: 哈尔滨工业大学出版社, 2006.

    Tan Heping, Xia Xinlin, Liu Linhua, et al. Numercial Calculation of Infrared Radiation Properties and Transfer[M].Harbin: Harbin Institude of Technology, 2006. (in Chinese)

杨化彬, 吴清文, 陈立恒, 何飞, 张旭升. 地磁坐标系下变姿态空间相机的外热流计算[J]. 红外与激光工程, 2015, 44(6): 1923. Yang Huabin, Wu Qingwen, Chen Liheng, He Fei, Zhang Xusheng. Calculation of external heat fluxes on space camera with changing attitudes frequently in Geomagnetic Coordinate system[J]. Infrared and Laser Engineering, 2015, 44(6): 1923.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!