中国激光, 2011, 38 (s1): s111005, 网络出版: 2011-11-21  

二维金属线网格结构的太赫兹滤波特性仿真研究

Numerical Simulation of Filtering Characteristics of Two-Dimensional Metallic Grid in Terahertz Band
作者单位
首都师范大学物理系,太赫兹光电子学教育部重点实验室, 北京 100048
摘要
基于时域有限差分(FDTD)法对金属井字形栅网、互补的方块阵列和二者叠加而成的十字叉丝孔阵列3种类型的二维金属线网格结构在太赫兹波段的滤波特性进行了数值分析。研究发现,金属井字形栅网结构实现了高通滤波的功能,方块阵列结构实现了低通滤波的功能,十字叉丝孔阵列结构则实现了带通滤波的功能。模拟结果表明,随着周期的增大,井字形栅网以及其互补方块阵列的截止频率向低频扩展,叠加而成的十字叉丝孔阵列允许透过的中心频率也随着周期的增大向低频移动。另外,以十字叉丝孔阵列结构为例的多层金属网格结构仿真结果显示,当层与层之间的间隔为20 μm,层数多于5层之后,其上升沿和下降沿都变得十分陡峭,层数的增加可以大大提高结构的滤波性能。
Abstract
Based on finite difference time domain (FDTD) method, the numerical simulation of filtering characteristics of the two dimensional metal grid which include the well-shaped grid, the array of complementary square metallic pill and the cross wire-hole array are carried out. The results show that the well-shaped metal grid structure achieves a high-pass of filter function, the array of square metallic pill achieves a low-pass of filter function, and the cross wire-hole array structure achieves a band-pass of filter function. Simulation results show that, with the increasing of the period the cut-off frequency of high-pass filter and low-pass filter move to low-frequency, and the center frequency allowed by the cross wire-hole array similarly moves to the low-frequency. The result of the multi-layer structure of the cross wire-hole array shows that, the rising edge and the falling edge become very steep when the spacing between layers is 20 μm and the more than 5 layers are used which greatly improved the filtering performance.
参考文献

[1] Ajay Nahata, Aniruddha S. Weling, Tony F. Heinz. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling[J]. Appl. Phys. Lett, 1996, 69(16): 2321~2323

[2] 张存林, 张岩, 赵国忠 等. 太赫兹感测与成像[ M ] . 北京: 国防工业出版社, 2008. 64~69

    Zhang Cunlin, Zhang Yan, Zhao Guozhong et al.. Terahertz Detection and Imaging[ M ]. Beijing: National Defense Industry Press, 2008. 64~69

[3] D. M. Mittleman, M. Gupta1, R. Neelamani et al.. Recent advances in terahertz imaging[J]. Appl. Phys. B, 1999, 68(6): 1085~1094

[4] 杨昆, 赵国忠, 梁承森 等. 脉冲太赫兹波成像与连续波太赫兹成像特性的比较[J]. 中国激光, 2009, 36(11): 2853~2858

    Yang Kun, Zhao Guozhong, Liang Chengsen et al.. Comparison between pulsed terahertz imaging and continuous-wave terahertz imaging[J]. Chinese J. Lasers, 2009, 36(11): 2853~2858

[5] I. H. Libon, S. Baumgartner, M. Hempel et al.. An optically controllable terahertz filter[J]. Appl. Phys. Lett., 2000, 75(20): 2821~2823

[6] H. Němec, L. Duvillaret, F. Garet et al.. Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect[J]. J . Appl. Phys., 2004, 96(8): 4072~4075

[7] Chaoyuan Chen, Ciling Pan, Cho-Fan Hsieh et al.. Liquid-crystal-based terahertz tunable Lyot filter[J]. Appl. Phys. Lett., 2006, 88(10): 101107

[8] Y. Zhang, Z. J. Li, B. J. Li. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Opt. Express, 2006, 14(7): 2679~2689

[9] Stephan Biber, Arnd Hofmann, Roland Shulz et al.. Design and measurement of a bandpass filter at 300 GHz based on a highly efficient binary grating[J]. IEEE Trans. on Microwave Theory and Techniques, 2004, 52(9): 2183~2189

[10] J. W. Lee, M. A. Seo, D. J. Park et al.. Shape resonance omni-directional terahertz filters with near-unity transmittance[J]. Opt. Express, 2006, 14(3): 1253~1259

[11] Dongmin Wu, Nicholas Fang, Cheng Sun et al.. Terahertz plasmonic high pass filter[J]. Appl. Phys. Lett., 2003, 83(1): 201~203

[12] Yong Ma, A. Khalid, Timothy D. Drysdale et al.. Direct fabrication of terahertz optical devices on low-absorption polymer substrates[J]. Opt. Lett., 2009, 34(10): 1555~1557

刘立明, 赵国忠, 魏波. 二维金属线网格结构的太赫兹滤波特性仿真研究[J]. 中国激光, 2011, 38(s1): s111005. Liu Liming, Zhao Guozhong, Wei Bo. Numerical Simulation of Filtering Characteristics of Two-Dimensional Metallic Grid in Terahertz Band[J]. Chinese Journal of Lasers, 2011, 38(s1): s111005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!