激光与光电子学进展, 2018, 55 (9): 091407, 网络出版: 2018-09-08   

Nd∶YVO4/Nd∶GdVO4组合晶体双频激光器实验研究 下载: 600次

Experimental Study of the Dual-Frequency Laser Based on the Nd∶YVO4/Nd∶GdVO4 Combined Crystal
作者单位
1 杭州电子科技大学通信工程学院, 浙江 杭州 310018
2 国民核生化灾害防护国家重点实验室, 北京 102205
3 防化研究院, 北京 102205
4 杭州电子科技大学学校办公室, 浙江 杭州 310018
摘要
实验研究了在一定抽运条件下, Nd∶YVO4/Nd∶GdVO4组合晶体双频激光器随温度变化的输出特性。在实验过程中, 设置抽运电流为14.5 A, 以5 ℃为间隔增加组合晶体的热沉温度, 当温度由5 ℃升至40 ℃时, 激光器实现了大于310 GHz的超大频差双频激光信号输出。实验结果发现:输出双频激光信号的功率均与热沉温度呈负相关关系, 拟合出的左、右峰功率随热沉温度的变化率分别为-0.0190 ℃-1和-0.0082 ℃-1; 尤其当热沉温度为32.36 ℃时, 双频激光器达到功率均衡状态。此外, 实验结果还发现输出双频激光信号的波长会随着热沉温度的上升发生线性红移, 其中左峰漂移速度为9.70 pm·℃-1, 右峰漂移速度为6.12 pm·℃-1。
Abstract
The output characteristics of the dual-frequency laser (DFL) based on the Nd∶YVO4/Nd∶GdVO4 combined crystal have been investigated experimentally. In the experiment, the pump current at 14.5 A is set, the heat sink temperature of the combined crystal rises from 5 ℃ to 40 ℃ with 5 ℃ intervals, and a DFL signal with super-large frequency difference up to 310 GHz is achieved. The experimental results show that the DFL signal power has a negative correlation with the heat sink temperature. The fitting rates of the left and right peaks power with heat sink temperature are -0.0190 ℃-1 and -0.0082 ℃-1, respectively. The DFL reaches power balance at the heat sink temperature of 32.36 ℃. In addition, the experiment also shows that the wavelengths of the DFL signal are red-shifted linearly with the heat sink temperature increasing. The measured red-shift rates of the left peak and right peak are 9.70 pm·℃-1 and 6.12 pm·℃-1, respectively.
参考文献

[1] 李芃芃, 郑娜, 伉沛川, 等. 全球5G频谱研究概述及启迪[J]. 电讯技术, 2017, 57(6): 734-740.

    Li P P, Zheng N, Kang P C, et al. Overview and inspiration of global 5G spectrum researches[J]. Telecommunication Engineering, 2017, 57(6): 734-740.

[2] 刘国平. 无线电频谱资源管理发展策略研究[D]. 济南: 山东财经大学, 2016: 1-6.

    Liu G P. Research on development strategy of radio spectrum resource management[D]. Jinan: Shandong University of Finance and Economics, 2016: 1-6.

[3] 希玉久. 无线电频谱资源[J]. 全球定位系统, 2002, 27(5): 40-43.

    Xi Y J. Radio spectrum resources[J]. GNSS World of China, 2002, 27(5): 40-43.

[4] 黄宗杰. 光载微波/毫米波传输技术研究[D]. 杭州: 浙江大学, 2012: 1-3.

    Huang Z J. Optical carried microwave/millimeter-wave transmission technology[D]. Hangzhou: Zhejiang University, 2012: 1-3.

[5] Tonda-Goldstein S, Dolfi D, Monsterleet A, et al. Optical signal processing in Radar systems[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(2): 847-853.

[6] Chen J, Zhu H, Xia W, et al. Self-mixing birefringent dual-frequency laser Doppler velocimeter[J]. Optics Express, 2017, 25(2): 560-572.

[7] 霍际伟. 毫米波ROF系统中全光频率变换技术的研究[D]. 北京: 北京邮电大学, 2011: 1-6.

    Huo J W. All-Optical frequency up and down-conversion for millimeter-wave over fiber systems[D]. Beijing: Beijing University of Posts and Telecommunications, 2011: 1-6.

[8] Danion G, Hamel C, Frein L, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15): 17673-17678.

[9] Rolland A, Frein L, Vallet M, et al. 40-GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23): 1738-1740.

[10] Pillet G, Morvan L, Ménager L, et al. Dual-frequency laser phase locked at 100 GHz[J]. Journal of Lightwave Technology, 2014, 32(20): 3824-3830.

[11] 胡淼, 张慧, 张飞, 等. 用于光生毫米波的双频微片激光器热致频差特性研究[J]. 物理学报, 2013, 62(20): 204205.

    Hu M, Zhang H, Zhang F, et al. Thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave[J]. Acta Physica Sinica, 2013, 62(20): 204205.

[12] Mckay A, Dawes J M. Microwave generation using a dual-helicoidally-polarized ceramic microchip laser[C]∥International Topical Meeting on Microwave Photonics Jointly Held with the 2008 Asia-Pacific Microwave Photonics Conference, September 09-October 03, 2008, Gold Coast, Qld, Australia. New York: IEEE, 2008: 263-266.

[13] Wang R Y, Li Y F. Dual-polarization spatial-hole-burning-free microchip laser[J]. IEEE Photonics Technology Letters, 2009, 21(17): 1214-1216.

[14] 胡淼, 黄前锋, 张慧, 等. LD抽运的双频固体激光器的光谱和频差特性研究[J]. 光电子·激光, 2014, 25(3): 472-477.

    Hu M, Huang Q F, Zhang H, et al. Spectral and frequency difference characteristics of the LD-pumped dual-frequency solid-state laser[J]. Journal of Optoelectronics·Laser, 2014, 25(3): 472-477.

[15] 戴荣, 胡淼, 蔡美伶, 等. Nd∶YVO4双频微片激光器的热致频差调谐实验研究[J]. 中国激光, 2017, 44(1): 0101003.

    Dai R, Hu M, Cai M L, et al. Experimental study of thermally induced frequency difference tuning of Nd∶YVO4 microchip dual frequency lasers[J]. Chinese Journal of Lasers, 2017, 44(1): 0101003.

[16] Huang Y J, Cho H H, Su K W, et al. Exploring a diffusion-bonded Nd∶YVO4/Nd∶GdVO4 crystal for generating an efficient diode-end-pumped dual-spectral-band laser[C]∥Advanced Solid State Lasers, October 04-09, 2015, Berlin, Germany. Washington: Optical Society of America, 2015: ATu1A.7.

[17] Délen X, Balembois F, Georges P. Temperature dependence of the emission cross section of Nd∶ YVO4 around 1064 nm and consequences on laser operation[J]. Journal of the Optical Society of America B, 2011, 28(5): 972-976.

[18] 蔡美伶, 胡淼, 戴荣, 等. Nd∶GdVO4和Nd∶YVO4晶体发射截面谱及微片激光器光谱的实验研究[J]. 中国激光, 2017, 44(11): 1101004.

    Cai M L, Hu M, Dai R, et al. Experimental study of emission cross section spectra and microchip laser spectra of Nd∶ GdVO4 and Nd∶ YVO4 crystals[J]. Chinese Journal of Lasers, 2017, 44(11): 1101004.

金涛, 胡淼, 李鹏, 范红丹, 韩宁, 冯冰, 欧军, 周雪芳, 杨国伟, 卢旸, 毕美华. Nd∶YVO4/Nd∶GdVO4组合晶体双频激光器实验研究[J]. 激光与光电子学进展, 2018, 55(9): 091407. Jin Tao, Hu Miao, Li Peng, Fan Hongdan, Han Ning, Feng Bing, Ou Jun, Zhou Xuefang, Yang Guowei, Lu Yang, Bi Meihua. Experimental Study of the Dual-Frequency Laser Based on the Nd∶YVO4/Nd∶GdVO4 Combined Crystal[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091407.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!