中国激光, 2021, 48 (1): 0111001, 网络出版: 2021-01-13   

通过圆偏振光提高飞秒激光诱导击穿光谱的发射强度 下载: 1198次

Improving Emission Intensity of Femtosecond Laser-Induced Breakdown Spectroscopy by Using Circular Polarization
作者单位
1 空军航空大学航空基础学院, 吉林 长春 130022
2 空军航空大学作战勤务学院, 吉林 长春 130022
3 吉林大学第一医院核医学科, 吉林 长春 130021
4 吉林大学原子与分子物理研究所, 吉林 长春 130012
引用该论文

于丹, 孙艳, 冯志书, 代玉银, 王秋云, 陈安民, 金明星. 通过圆偏振光提高飞秒激光诱导击穿光谱的发射强度[J]. 中国激光, 2021, 48(1): 0111001.

Dan Yu, Yan Sun, Zhishu Feng, Yuyin Dai, Qiuyun Wang, Anmin Chen, Mingxing Jin. Improving Emission Intensity of Femtosecond Laser-Induced Breakdown Spectroscopy by Using Circular Polarization[J]. Chinese Journal of Lasers, 2021, 48(1): 0111001.

参考文献

[1] Wang Z, Dong F Z, Zhou W D. A rising force for the world-wide development of laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 617-620.

[2] 贾军伟, 付洪波, 王华东, 等. 光束整形对激光诱导击穿光谱稳定性的改善[J]. 中国激光, 2019, 46(3): 0311004.

    Jia J W, Fu H B, Wang H D, et al. Improvement of beam shape modification on stability of laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(3): 0311004.

[3] 刘世明, 修俊山, 刘云燕. 基于激光诱导击穿光谱技术的铜铟镓硒薄膜中元素含量比的快速定量分析方法[J]. 中国激光, 2019, 46(9): 0911001.

    Liu S M, Xiu J S, Liu Y Y. Rapid quantitative analysis of element content ratios in Cu(in, Ga)Se2 thin films using laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2019, 46(9): 0911001.

[4] 杨雪, 张丹, 陈安民, 等. 聚焦透镜到样品表面的距离对激光诱导硅等离子体原子谱线强度和离子谱线强度的影响[J]. 中国激光, 2019, 46(11): 1111001.

    Yang X, Zhang D, Chen A M, et al. Influence of distance between focusing lens and sample surface on atomic line and ionic line intensities of laser-induced silicon plasmas[J]. Chinese Journal of Lasers, 2019, 46(11): 1111001.

[5] 郑培超, 李倩雨, 王金梅, 等. 螯合树脂富集辅助激光诱导击穿光谱检测水体中的Cu元素和Mn元素[J]. 中国激光, 2019, 46(8): 0811001.

    Zheng P C, Li Q Y, Wang J M, et al. Detection of copper and manganese in water by laser-induced breakdown spectroscopy based on chelate resin[J]. Chinese Journal of Lasers, 2019, 46(8): 0811001.

[6] 齐洪霞, 赵亮, 金川琳, 等. 样品温度对纳秒激光诱导铝等离子体光谱强度的影响[J]. 中国激光, 2019, 46(2): 0211002.

    Qi H X, Zhao L, Jin C L, et al. Influence of sample temperature on spectral intensity of nanosecond laser-induced aluminum plasma[J]. Chinese Journal of Lasers, 2019, 46(2): 0211002.

[7] Wang Y, Yuan H, Fu Y T, et al. Experimental and computational investigation of confined laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 126: 44-52.

[8] Wang Q Y, Chen A M, Wang Y, et al. Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(7): 1154-1157.

[9] Dell'Aglio M, Alrifai R, De Giacomo A. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 148: 105-112.

[10] Aguirre MA, LegnaioliS, AlmodóvarF, et al., 2013, 79/80: 88- 93.

[11] Penczak J S, Liu Y M, Gordon R J. Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(2): 186-188.

[12] Wang Y, Chen A M, Zhang D, et al. Enhanced optical emission in laser-induced breakdown spectroscopy by combining femtosecond and nanosecond laser pulses[J]. Physics of Plasmas, 2020, 27(2): 023507.

[13] Wang Y, Chen A M, Li S C, et al. Enhancement of laser-induced Fe plasma spectroscopy with dual-wavelength femtosecond double-pulse[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 497-505.

[14] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

[15] Wang Q, Chen A, Li S, et al. Influence of ambient pressure on the ablation hole in femtosecond laser drilling Cu[J]. Applied Optics, 2015, 54(27): 8235-8240.

[16] Hou H M, Cheng L, Richardson T, et al. Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(11): 2295-2302.

[17] Wang T F, Guo J, Shao J F, et al. Ultrafast thermionic emission from metal irradiated using a femtosecond laser and an electric field in combination[J]. Physics of Plasmas, 2015, 22(3): 033106.

[18] Freeman J R, Harilal S S, Diwakar P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 43-50.

[19] Kaganov M I, Lifshitz M I, Tanatarov M V. Relexation between electrons and crystialline lattices[J]. Soviet Physics JETP, 1957, 4: 173-178.

[20] Anisimov S I, kapeliovish B L. Electron emission from metal surfaces exposed to ultra-short laser pulses[J]. Soviet Physics JETP, 1974, 39: 375-378.

[21] Li S Y, Li S C, Sui L Z, et al. Contribution of nitrogen atoms and ions to the luminescence emission during femotosecond filamentation in air[J]. Physical Review A, 2016, 94(5): 059901.

[22] Mitryukovskiy S, Liu Y, Ding P J, et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical Review Letters, 2015, 114(6): 063003.

[23] Qi H X, Li S Y, Qi Y, et al. Effect of sample position on collinear femtosecond double-pulse laser-induced breakdown spectroscopy of silicon in air[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1105-1111.

[24] Guo J, Wang T F, Shao J F, et al. Emission enhancement ratio of the metal irradiated by femtosecond double-pulse laser[J]. Optics Communications, 2012, 285(7): 1895-1899.

[25] Li S C, Li S Y, Jiang Y F, et al. Electron emission from a double-layer metal under femtosecond laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2015, 342: 300-304.

[26] Shi Y, Chen A M, Jiang Y F, et al. Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air[J]. Optics Communications, 2016, 367: 174-180.

[27] Ahmed R, Ahmed N, Iqbal J, et al. An inexpensive technique for the time resolved laser induced plasma spectroscopy[J]. Physics of Plasmas, 2016, 23(8): 083101.

[28] Wang Q Y, Chen A M, Xu W P, et al. Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1242-1246.

[29] Lemos N, Grismayer T, Cardoso L, et al. Effects of laser polarization in the expansion of plasma waveguides[J]. Physics of Plasmas, 2013, 20(10): 103109.

[30] Corkum P B, Burnett N H, Brunel F. Above-threshold ionization in the long-wavelength limit[J]. Physical Review Letters, 1989, 62(11): 1259-1262.

[31] Smeenk C T, Arissian L, Zhou B, et al. Partitioning of the linear photon momentum in multiphoton ionization[J]. Physical Review Letters, 2011, 106(19): 193002.

[32] Zhou B, Houard A, Liu Y, et al. Measurement and control of plasma oscillations in femtosecond filaments[J]. Physical Review Letters, 2011, 106(25): 255002.

[33] Nakimana A, Tao H Y, Gao X, et al. Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of Al[J]. Journal of Physics D: Applied Physics, 2013, 46(28): 285204.

[34] Ciucci A, Corsi M, Palleschi V, et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 1999, 53(8): 960-964.

[35] Zorba V, Mao X L, Russo R E. Femtosecond laser induced breakdown spectroscopy of Cu at the micron/sub-micron scale[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 37-42.

于丹, 孙艳, 冯志书, 代玉银, 王秋云, 陈安民, 金明星. 通过圆偏振光提高飞秒激光诱导击穿光谱的发射强度[J]. 中国激光, 2021, 48(1): 0111001. Dan Yu, Yan Sun, Zhishu Feng, Yuyin Dai, Qiuyun Wang, Anmin Chen, Mingxing Jin. Improving Emission Intensity of Femtosecond Laser-Induced Breakdown Spectroscopy by Using Circular Polarization[J]. Chinese Journal of Lasers, 2021, 48(1): 0111001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!