光学 精密工程, 2019, 27 (7): 1426, 网络出版: 2019-09-02   

用于汽车抬头显示器的光学增亮膜设计

Design of optical brightness enhancement film for direct-lit backlight in automobile head-up display
作者单位
1 合肥工业大学 特种显示技术国家工程实验室 现代显示技术省部共建国家重点实验室 光电技术研究院, 安徽 合肥 230009
2 合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230009
摘要
为了降低直下式背光的厚度并提升亮度, 设计了一种光学增亮膜。基于Snell定律设计了对单个LED发出光线起均匀照度作用的二维微结构曲线。该微结构曲线是把LED看做理想点光源设计并计算的, 但考虑到实际的LED是一个正方形发光面, 因此对该微结构曲线进行了优化, 提升了它对实际尺寸LED的均匀照度作用。根据LED的排布规律提出了一种正六边形蜂窝拼接排布方案, 并进行了仿真分析。仿真结果表明: 使用光学增亮膜的背光中心亮度提升了172.4%。根据微结构设计结果采用无掩膜直写光刻工艺制作了实际样品并进行了效果测试, 测试结果表明: 中心亮度提升了136.2%, 厚度降低了13 mm。采用本文设计的光学增亮膜可以有效地提高背光亮度同时降低背光厚度, 满足汽车抬头显示器的直下式背光亮度高、体积小的要求。
Abstract
The direct-lit backlight used in an automobile head-up display must have high brightness and a small size. To reduce the thickness of a direct-lit backlight and improve its brightness, an optical brightness enhancement film is designed. First, a two-dimensional microstructure curve for the uniform illumination of light emitted by a single light-emitting diode (LED) is designed according to Snell's law. A microstructure curve is designed and calculated with an LED as an ideal point light source. Based on the consideration that the actual LED is a square luminous surface, the microstructure curve is optimized and its uniform illumination function to a real LED is improved. Then, based on the arrangement of LEDs, a hexagonal honeycomb arrangement is proposed and a simulation analysis is conducted. Simulation results show that the central brightness of use of the optical brightness enhancement film is increased by 173.2%. From the results of the microstructural design, a practical sample is produced by using the maskless direct lithography process and its effect is tested. Test results show that the central brightness is increased by 136.2% and the thickness is reduced by 13 mm. The proposed optical brightness enhancement film can effectively improve brightness and reduce the thickness of backlight units.
参考文献

[1] CHAND T, DEBNATH S K, RAYAGOND S K, et al.. Design of refractive head-up display system using rotational symmetric aspheric optics[J]. Optik, 2017, 131: 515-519.

[2] AUSTIN R L, DENNING B S, DREWS B C, et al.. Qualified viewing space determination of near-eye and head-up displays[J]. Journal of the Society for Information Display, 2018, 26(9): 567-575.

[3] 李建功. LED背光模组发光效率的研究[D]. 泉州: 华侨大学, 2012.

    LI J G. Study of Optical Efficiency of LED Backlight Module[D]. Quanzhou: Huaqiao University, 2012. (in Chinese)

[4] FENG Q B, LI Y N, LI Q G, et al.. Secondary optical design for LED backlight luminance improvement of helmet-mounted display[J]. Journal of Display Technology, 2016, 12(6): 577-582.

[5] GANNON C, LIANG R G. Using spherical harmonics to describe large-angle freeform lenses[J]. Applied Optics, 2018, 57(28): 8143-8147.

[6] ZHAO Z L, ZHANG H H, ZHENG H, et al.. New reversing freeform lens design method for LED uniform illumination with extended source and near field[J]. Optics Communications, 2018, 410: 123-129.

[7] ZHENG J B, QIAN K Y. Designing single LED illumination distribution for direct-type backlight[J]. Applied Optics, 2013, 52(28): 7022-7027.

[8] KIM B, KIM J, OHM W S. Eliminating hotspots in a multi-chip LED array direct backlight system with optimal patterned reflectors for uniform illuminance and minimal system thickness[J]. Optics Express, 2010, 18(8): 8595-8604.

[9] CHEN B T, PAN J W. High-efficiency directional backlight design for an automotive display[J]. Applied Optics, 2018, 57(16): 4386-4395.

[10] YEON J, LEE J H, LEE H S, et al.. An effective light-extracting microstructure for a single-sheet backlight unit for liquid crystal display[J]. Journal of Micromechanics and Microengineering, 2012, 22(9): 095006.

[11] ZHANG R. Directional backlighting system using a light guide with paired microstructures[J]. Applied Optics, 2017, 56(24): 6735-6741.

[12] PARK S R, KWON O J, SHIN D, et al.. Grating micro-dot patterned light guide plates for LED backlights[J]. Optics Express, 2007, 15(6): 2888-2899.

[13] HUANG B L, GUO T L. Integrated backlight module to provide a collimated and uniform planar light source[J]. Applied Optics, 2016, 55(26): 7307-7313.

[14] SEKIGUCHI Y, KONNO A, TSUMURA M. Design method for a thin uniform direct backlight using a diffuser plate with a pattern on the surface and optical films[J]. Applied Optics, 2015, 54(3): 482-491.

[15] TENG T C, LAI W C. Optimization of an optical film for highly collimating the emerging light[J]. Journal of Display Technology, 2015, 11(4): 386-394.

[16] QIN Z. Luminance enhancement without sacrificing the viewing angle in a direct-lit backlight by addressing the angle-dependent characteristic of the prism film[J]. Displays, 2017, 50: 49-56.

[17] 苏拾, 张国玉, 王凌云, 等. 基于LED阵列光源的太阳模拟器[J].光学 精密工程, 2018, 26(2): 307-315.

    SU SH, ZHANG G Y, WANG L Y, et al.. Solar simulator based on LED array light source[J]. Opt. precision Eng., 2018,26(2): 307-315. (in Chinese)

[18] 兰红波, 郭良乐, 许权, 等. 大面积纳米压印光刻晶圆级复合软模具制造[J]. 光学 精密工程, 2018, 26(4): 894-905.

    LAN H B, GUO L L, XU Q, et al.. Wafer-level composite mold for large-area nanoimprint lithography[J]. Opt. Precision Eng., 2018, 26(4): 894-905. (in Chinese)

冯奇斌, 武晨晨, 李德华, 王梓, 吕国强. 用于汽车抬头显示器的光学增亮膜设计[J]. 光学 精密工程, 2019, 27(7): 1426. FENG Qi-bin, WU Chen-chen, LI De-hua, WANG Zi, L Guo-qiang. Design of optical brightness enhancement film for direct-lit backlight in automobile head-up display[J]. Optics and Precision Engineering, 2019, 27(7): 1426.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!