人工晶体学报, 2020, 49 (4): 651, 网络出版: 2020-06-15  

水热法制备铝掺杂二氧化锰及其储锌性能的研究

Hydrothermal Synthesis and Zinc Storage Performance of Al-doped MnO2
作者单位
1 太原理工大学材料科学与工程学院,太原 030024
2 烟台大学环境与材料工程学院,烟台 264005
摘要
可充电水系锌锰电池成本低、环保无毒、安全性好,在大规模储能领域具有广阔应用前景。然而,该电池中不仅存在MnO2正极导电率低、结构稳定性差等问题,而且存在负极锌枝晶生长与析氢腐蚀问题,这严重制约了电池循环稳定性的提升。本文采用水热法制备了Al掺杂二氧化锰作为锌锰电池的高稳定性正极材料,并通过X射线衍射(XRD)、能量色散X射线光谱仪(EDS)、傅里叶变换红外光谱仪(FT-IR)和X射线光电子能谱(XPS)详细讨论了Al掺杂对MnO2物相、形貌、含水量与电化学性能的影响。研究表明,Al掺杂不仅使样品由微米级β-MnO2转变为纳米级α-MnO2,还使产物中结晶水含量增加。作为锌锰电池正极材料,所制备的Al掺杂MnO2在1 A?g-1高电流密度下500次循环后剩余容量高达150.1 mAh?g-1,循环稳定性远优于未掺杂的MnO2样品(500次循环后容量为97.8 mAh?g-1)。本研究对高性能锌锰电池的开发具有一定启示意义。
Abstract
Rechargeable aqueous zinc-manganese dioxide (Zn-MnO2) batteries are one of promising systems for grid-scale energy storage applications, owing to their favorable merits such as low cost, environmental benignity and intrinsic operation safety. However, these batteries always suffer from poor cycling stability because of the low electric conductivity and poor structural stability of MnO2 cathodes, besides the detrimental dendrite growth and hydrogen evolution corrosion of Zn anodes. In this work, a hydrothermally-prepared Al-doped MnO2 as stable cathode material for aqueous Zn-MnO2 batteries were reported. The effects of Al doping on the phase, morphology, water content and electrochemical performance of MnO2 were systematically explored by X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) tests. Equipment analyses indicate that Al doping not only transforms the product from micro β-MnO2into nano α-MnO2, but also improves the host material’s crystal water content. When used as cathodes of Zn-MnO2 batteries, the Al-doped MnO2 has a residual capacity of 150.1 mAh?g-1 after 500 cycles at a high current density of 1 A?g-1, much better than the undoped MnO2 (residual capacity=97.8 mAh?g-1 after 500 cycles). This research has certain enlightenment to the development of high-performance zinc-manganese batteries.
参考文献

[1] Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360.

[2] Tang Y, Zheng S, Xu Y, et al. Advanced batteries based on manganese dioxide and its composites[J].Energy Storage Materials,2018,12:284-309.

[3] Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J].Nature Communications,2017,8(1):405.

[4] Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J].Nature Communications,2018,9(1):2906.

[5] Wang J, Wang J G, Liu H, et al. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries[J].Journal of Materials Chemistry A,2019,7(22):13727-13735.

[6] Xu C, Li B, Du H, et al. Energetic zinc ion chemistry:the rechargeable zinc ion battery[J].Angewandte Chemie International Edition,2012,51(4):933-935.

[7] Higashi S, Lee S W, Lee J S, et al. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration[J].Nature Communications,2016,7(1):11801.

[8] Sun K E, Hoang T K, Doan T N, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J].ACS Applied Materials & Interfaces,2017,9(11):9681-9687.

[9] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J].Nature Materials,2018,17(6):543-549.

[10] Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J].Advanced Energy Materials,2018,8(25):1801090.

[11] Parker J F, Chervin C N, Nelson E S, et al. Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling[J].Energy & Environmental Science,2014,7(3):1117-1124.

[12] Cui M, Xiao Y, Kang L, et al. Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries[J].ACS Applied Energy Materials,2019,2(9):6490-6496.

[13] Winsberg J, Janoschka T, Morgenstern S, et al. Poly(TEMPO)/Zinc hybrid-flow battery:a novel, “green”, high voltage, and safe energy storage system[J].Advanced Materials,2016,28(11):2238-2243.

[14] Song M, Tan H, Chao D, et al. Recent advances in Zn-Ion batteries[J].Advanced Functional Materials,2018,28(41):1802564.

[15] Lee B, Yoon C S, Lee H R, et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide[J].Scientific Reports,2014,4:6066.

[16] Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J].Journal of the American Chemical Society,2017,139(29):9775-9778.

[17] Zhang X, Wu S, Deng S, et al. 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries[J].Small Methods,2019,3(12):1900525.

[18] Poyraz A S, Laughlin J, Zec Z. Improving the cycle life of cryptomelane type manganese dioxides in aqueous rechargeable zinc ion batteries:The effect of electrolyte concentration[J].Electrochimica Acta,2019,305:423-432.

[19] Konarov A, Voronina N, Jo J H, et al. Present and future perspective on electrode materials for rechargeable zinc-ion batteries[J].ACS Energy Letters,2018,3(10):2620-2640.

[20] Wu B, Zhang G, Yan M, et al. Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous zn-ion battery[J].Small,2018,14(13):1703850.

[21] Deng Z, Huang J, Liu J, et al. β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life[J].Materials Letters,2019,248:207-210.

[22] Xu D, Li B, Wei C, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J].Electrochimica Acta,2014,133:254-261.

[23] Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J].Nature Energy,2016,1(5):16039.

[24] Li T, Wu J, Xiao X, et al. Band gap engineering of MnO2 through in situ Al-doping for applicable pseudocapacitors[J].RSC Advances,2016,6(17):13914-13919.

[25] Hu Z, Xiao X, Chen C, et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability[J].Nano Energy,2015,11:226-234.

[26] Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J].Nature Energy, 2016,1(10):16119.

[27] Xia C, Guo J, Li P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J].Angewandte Chemie International Edition, 2018,57(15):3943-3948.

[28] Alfaruqi M H, Mathew V, Song J, et al. Electrochemical zinc intercalation in lithium vanadium oxide:a high-capacity zinc-ion battery cathode[J].Chemistry of Materials, 2017,29(4):1684-1694.

[29] Pang Q, Sun C, Yu Y, et al. H2V3O8 Nanowire/Graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity[J].Advanced Energy Materials, 2018,8(19):1800144.

[30] Huang Y, He W, Zhang P, et al. Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn-MnO2 batteries[J].Functional Materials Letters, 2018,11(6):1840006.

[31] Xiao L, Zhao Y, Yang Y, et al. Enhanced electrochemical stability of Al-doped LiMn2O4synthesized by a polymer-pyrolysis method[J].Electrochimica Acta, 2008,54(2):545-550.

[32] Ding Y L, Xie J, Cao G S, et al. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries[J].The Journal of Physical Chemistry C, 2011,115(19):9821-9825.

[33] Bahloul A, Nessark B, Chelali N E, et al. New composite cathode material for Zn/MnO2 cells obtained by electro-deposition of polybithiophene on manganese dioxide particles[J].Solid State Ionics, 2011,204-205:53-60.

[34] Lee J, Ju J B, Cho W I, et al. Todorokite-type MnO2 as a zinc-ion intercalating material[J].Electrochimica Acta, 2013,112:138-143.

[35] Nam K W, Kim H, Choi J H, et al. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries[J].Energy & Environmental Science, 2013,12(6):1999-2009.

[36] Wang D, Wang L, Liang G, et al. A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery[J].ACS Nano, 2019,13(9):10643-10652.

[37] Yan M, He P, Chen Y, et al. Water-Lubricated Intercalation in V2O5?nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J].Advanced Materials, 2018,30(1):1703725.

[38] Pottrr R M, Rossman G R. The tetravalent manganese oxides:identification, hydration, and structural relationships by infrared spectroscopy[J].American Mineralogist, 1979,64(11-12):1199-1218.

[39] Liang S, Teng F, Bulgan G, et al. Effect of phase structure of mno2 nanorod catalyst on the activity for CO oxidation[J].The Journal of Physical Chemistry C, 2008,112(14):5307-5315.

[40] Jana S, Basu S, Pande S, et al. Shape-selective synthesis, magnetic properties, and catalytic activity of single crystalline β-MnO2 nanoparticles[J].The Journal of Physical Chemistry C, 2007,111(44):16272-16277.

[41] Julien C M, Massot M, Poinsignon C. Lattice vibrations of manganese oxides[J].Spectrochimica Acta Part A, 2004,60(3):689-700.

[42] Chodankar N R, Dubal D P, Gund G S, et al. Flexible all-solid-state MnO2 thin films based symmetric supercapacitors[J].Electrochimica Acta, 2015,165:338-347.

[43] Wang J G, Yang Y, Huang Z H, et al. Shape-controlled synthesis of hierarchical hollow urchin-shape α-MnO2 nanostructures and their electrochemical properties[J].Materials Chemistry and Physics, 2013,140(2-3):643-650.

[44] Wang G, Shao G, Wang L, et al. Enhanced electrochemical properties of Al-doped bulk manganese oxides synthesized by a facile liquid-phase method[J].Ionics, 2014,20(10):1367-1375.

[45] Stranick M A. MnO2 by XPS[J].Surface Science Spectra, 1999,6(1):31-38.

[46] Wang H, Xu C, Chen Y, et al. MnO2 nanograsses on porous carbon cloth for flexible solid-state asymmetric supercapacitors with high energy density[J].Energy Storage Materials,2017,8:127-133.

[47] Zhang Y, Wang B, Liu F, et al. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors[J].Nano Energy, 2016,27:627-637.

[48] Lee W G, Jang H S, Justin Raj C, et al. Effect of proton irradiation on the structural and electrochemical properties of MnO2 nanosheets[J].Journal of Electroanalytical Chemistry, 2018,811:16-25.

[49] Zeng J, Wang S, Yu J, et al. Al and/or Ni-doped nanomanganese dioxide with anisotropic expansion and their electrochemical characterisation in primary Li-MnO2 batteries[J].Journal of Solid State Chemistry, 2014,18(6):1585-1591.

[50] Peng C, Lang J, Xu S, et al. Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors[J].RSC Advances, 2014,4(97):54662-54667.

[51] Islam S, Alfaruqi M H, Mathew V, et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries[J].Journal of Materials Chemistry A, 2017,5(44):23299-23309.

[52] Palaniyandy N, Kebede M A, Raju K, et al. α-MnO2 nanorod/onion-like carbon composite cathode material for aqueous zinc-ion battery[J].Materials Chemistry and Physics, 2019,230:258-266.

[53] Alfaruqi M H, Islam S, Mathew V, et al. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties[J].Applied Surface Science, 2017,404:435-442.

[54] Zhang H, Liu Q, Wang J, et al. Boosting Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ Intercalation[J].Journal of Materials Chemistry A, 2019,7(38):22079-22083.

田柱, 李雪渊, 肖岩, 王变, 孙学勤, 尤东江, 刘影, 朱建辉, 高峰, 康利涛. 水热法制备铝掺杂二氧化锰及其储锌性能的研究[J]. 人工晶体学报, 2020, 49(4): 651. TIAN Zhu, LI Xueyuan, XIAO Yan, WANG Bian, SUN Xueqin, YOU Dongjiang, LIU Ying, ZHU Jianhui, GAO Feng, KANG Litao. Hydrothermal Synthesis and Zinc Storage Performance of Al-doped MnO2[J]. Journal of Synthetic Crystals, 2020, 49(4): 651.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!