激光技术, 2018, 42 (3): 390, 网络出版: 2018-05-29  

保护气体对接头形貌及熔滴过渡的影响与模拟

Influence and simulation of protective gas on joint morphology and droplet transition
作者单位
长春理工大学 机电工程学院, 长春 130022
摘要
为了研究保护气体流量对复合焊接接头形貌及熔滴过渡的影响, 采用5mm厚的高强钢板材进行了激光电弧复合焊接试验的理论分析和实验验证, 获得了不同气流量下的焊缝形貌以及焊接过程中电弧和熔滴图像。结果表明, 随着保护气体流量的增大, 焊接熔深先增大后减小;当保护气体流量在25L/min, 焊接熔深达到最大; 且焊缝的铺展性较好, 飞溅较少; 保护气体流量通过影响熔滴过渡的形式, 对熔滴过渡频率产生影响; 随着气流量的增大, 熔滴过渡频率减小, 且在25L/min时, 熔滴过渡频率较稳定; 采用FLUENT软件对气流量进行数值模拟, 气流量越大, 保护气体流速越大, 在工件表面的作用面积减小。该研究结果为实际工程应用中选择保护气体流量制备高质量的焊缝奠定了基础。
Abstract
In order to study effect of protective gas flow on morphology and droplet transition of hybrid welding joint, theoretical analysis and experimental verification of laser arc hybrid welding test were carried out by using 5mm thick high strength steel sheet. The morphology of welding seam under different gas flow, arc and droplet image during the welding process were obtained. The results show that the welding depth first increases and then decreases with the increase of shelding gas flow. The welding depth reaches the maximum with shelding gas flow of 25L/min. The welding seams have good spreading and less splash. Shelding gas flow affects droplet transition frequency by affecting droplet transition form. Droplet transition frequency reduces with the increase of shelding gas flow. Droplet transition frequency is stable with shelding gas flow of 25L/min. FLUENT software was used to simulate gas flow. The larger the gas flow, the greater the shelding gas flow rate, the smaller the action area on the workpiece surface. The results lay the foundation for the preparation of high quality welding seam with shelding gas flow in practical engineering.
参考文献

[1] STEEN W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636-5641.

[2] L G Sh, SHI Ch Y, DONG Ch L, et al. Development and application status of laser-arc hybrid welding[J]. Aviation Manufacturing Technology, 2005(5): 86-88(in Chinese).

[3] XIAO R Sh, WU Sh K, Progress on laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2008, 35(11): 1680-1685(in Chinese).

[4] BAGGER C, OLSEN F O. Review of laser hybrid welding[J]. Journal of Laser Applications, 2005, 17(1): 2-14.

[5] CHEN Y B, CHEN J, LI L Q. The properties of arc and weld in laser-TIG hybrid process[J]. Transactions of the China Welding Institution, 2003, 24(1): 55-57(in Chinese).

[6] SONG X H, JIN X Zh, CHEN Sh Q, et al. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J]. Laser Technology, 2015, 39(2): 259-265(in Chinese).

[7] HONG L, WU G, CHEN W Zh. Influence of protective gas flow on welding quality for CO2 laser welding of aluminum alloy[J]. Chinese Journal of Lasers, 2005, 32(11): 1571-1576(in Chinese).

[8] FAN Y, LI P Zh, LIU A M, et al. The effect of protective gas on weld characteristics and mechanical properties in fiber laser welded thin A304[J]. Optics & Laser Technology, 2017, 54(1): 011404 (in Chinese).

[9] CHEN Zh N. Welding engineer handbook[M]. Beijng: China Machine Press, 2002: 385-392 (in Chinese).

[10] LI M, ZHANG W, HUA X M, et al. An investigation of metal transfer and plasma dynamical behavior during fiber laser-GMAW-P hybrid welding[J]. Chinese Journal of Lasers, 2017, 44(4):0402008(in Chinese).

[11] XIAO R Sh, MEI H H, ZUO T Ch. The effect of auxiliary gas on light-induced plasma in CO2 laser welding[J]. Chinese Journal of Lasers, 1998, 25(11): 1045-1050(in Chinese).

[12] CAI X Y, LI H, YANG L J, et al. Improvement of weld appearance of laser-short circuiting transfer metal-inert gas(MIG) hybrid welded aluminum alloys[J]. Chinese Journal of Lasers, 2014, 41(5): 0503001 (in Chinese).

[13] LIU W Q, LI Y Q, LIU F D, et al. Study on electromagnetic contraction force of droplet transferon laser-arc hybrid welding[J]. App-lied Laser, 2016, 36(2): 188-192(in Chinese).

[14] ZHAO Z Q. Study on plasma shape and weld characteristic during laser-TIG hybrid welding[D]. Beijing: Beijing Industry University, 2011: 29-36(in Chinese).

[15] CARY H B, HELZER S C. Moder welding technology[M]. Beijing: Chemical Industry Press, 2010: 85-90(in Chinese).

[16] LIU F D, ZHANG H, DU Sh F, et al. Influence of laser power on arc and droplet behaviors in droplets on CO2 laser-MAG arc hybrid welding[J]. Journal of Mechanical Engineering, 2013, 49(4): 75-82(in Chinese).

[17] ZENG X Y, GAO M, YAN J. Effects of protective gas in laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2011, 38(6): 601005 (in Chinese).

[18] HAMADOU M, FABBRO R, CAILLIBOTTE G. Effect of gas protective delivery mode on high power CO2 laser welding[C]//Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics,2004. San Fransisco,USA:ICALEO, 2004: 171-180.

[19] SHI Y, WANG G L, ZHU M, et al. Effect of protective gas composition on the transition form of GMAW bypass droplet in double-wire bypass coupling arc[J]. Transactions of the China Welding Institution, 2014, 35(3): 15-18(in Chinese).

汝连志, 刘凤德, 刘双宇, 张宏, 白頔. 保护气体对接头形貌及熔滴过渡的影响与模拟[J]. 激光技术, 2018, 42(3): 390. RU Lianzhi, LIU Fengde, LIU Shuangyu, ZHANG Hong, BAI Di. Influence and simulation of protective gas on joint morphology and droplet transition[J]. Laser Technology, 2018, 42(3): 390.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!