Photonics Research, 2015, 3 (5): 05000214, Published Online: Jan. 6, 2016  

Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime Download: 1099次

Author Affiliations
1 Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics,Hunan University, Changsha 410082, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University,Shenzhen 518060, China
Abstract
Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared (mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene (~10?7 cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics, potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.
References

[1] A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009).

[3] F. Bonaccorso,Z. Sun, T. Hasan,andA. C. Ferrari, “Graphenephotonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).

[4] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).

[5] S. Wu, L. Mao, A. M. Jones, W. Yao, C. Zhang, and X. Xu, “Quantum-enhanced tunable second-order optical nonlinearity in bilayer graphene,” Nano Lett. 12, 2032–2036 (2012).

[6] J. J. Dean and H. M. van Driel, “Second harmonic generation from graphene and graphitic films,” Appl. Phys. Lett. 95, 261910 (2009).

[7] M. Glazov, “Second harmonic generation in graphene,” JETP Lett. 93, 366–371 (2011).

[8] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene modelocked ultrafast laser,” ACS Nano 4, 803–810 (2010).

[9] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett. 35, 3622–3624 (2010).

[10] H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).

[11] G. Sobon, “Mode-locking of fiber lasers using novel twodimensional nanomaterials: graphene and topological insulators [Invited],” Photon. Res. 3, A56–A63 (2015).

[12] J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, H. Yu, H. Zhang, J. Wang, and D. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012).

[13] W. Tan, C. Su, R. Knize, G. Xie, L. Li, and D. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96, 031106 (2010).

[14] J. Ma, G. Xie, P. Lv, W. Gao, P. Yuan, L. Qian, U. Griebner, V. Petrov, H. Yu, and H. Zhang, “Wavelength-versatile graphenegold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers,” Sci. Rep. 4, 5016 (2014).

[15] M. Oya, H. Kishikawa, N. Goto, and S.-I. Yanagiya, “All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene,” Opt. Express 20, 27322–27330 (2012).

[16] P. Chantharasupawong, R. Philip, N. T. Narayanan, P. M. Sudeep, A. Mathkar, P. M. Ajayan, and J. Thomas, “Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties,” J. Phys. Chem. C 116, 25955–25961 (2012).

[17] Y. Wu, B. Yao, Q. Feng, X. Cao, X. Zhou, Y. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Generation of cascaded fourwave- mixing with graphene-coated microfiber,” Photon. Res. 3, A64–A68 (2015).

[18] W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, and H. Wang, “Ultrafast all-optical graphene modulator,” Nano Lett. 14, 955–959 (2014).

[19] J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009).

[20] Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express 20, 23201–23214 (2012).

[21] H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett. 11, 2622–2627 (2011).

[22] J. Zhou, A. Luo, Z. Luo, X. Wang, X. Feng, and B.-O. Guan, “Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber,” Photon. Res. 3, A21–A24 (2015).

[23] Z. Liu, X. Zhang, X. Yan, Y. Chen, and J. Tian, “Nonlinear optical properties of graphene-based materials,” Chin. Sci. Bull. 57, 2971–2982 (2012).

[24] R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett. 14, 73–74 (1969).

[25] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).

[26] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 1856–1858 (2012).

[27] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).

[28] R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).

[29] S. Chu, S. Wang, and Q. Gong, “Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film,” Chem. Phys. Lett. 523, 104–106 (2012).

[30] G. Zheng, Y. Chen, H. Huang, C. Zhao, S. Lu, S. Chen, H. Zhang, and S. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).

[31] C. Gao, X. Zhao, J. Yao, X.-Q. Yan, X. T. Kong, Y. Chen, Z. B. Liu, and J. G. Tian, “Sign of differential reflection and transmission in pump-probe spectroscopy of graphene on dielectric substrate,” Photon. Res. 3, A1–A9 (2015).

[32] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008).

[33] M. Breusing, S. Kuehn, T. Winzer, E. Mali , F. Milde, N. Severin, J. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83, 153410 (2011).

[34] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, “Microscopic theory of absorption and ultrafast many-particle kinetics in graphene,” Phys. Rev. B 84, 205406 (2011).

[35] . Rana, “Electron-hole generation and recombination rates for Coulomb scattering in graphene,” Phys. Rev.B76, 155431 (2007).

[36] L. Huang, G. V. Hartland, L.-Q. Chu, R. M. Feenstra, C. Lian, K. Tahy, and H. Xing, “Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene,” Nano Lett. 10, 1308–1313 (2010).

[37] M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).

[38] B. Semnani, A. H. Majedi, and S. Safavi-Naeini, “Nonlinear quantum optical properties of graphene: the role of chirality and symmetry,” arXiv:1502.02203 (2015).

[39] G. Sucha, “Overview of industrial and medical applications of ultrafast lasers,” in Handbook of Ultrafast Lasers: Technology and Applications, M. E. Fermann, A. Galvanauskas, and G. Sucha, eds. (Academic, 2003), pp. 286–316.

[40] J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).

[41] G. Lenz, J. Zimmermann, T. Katsufuji, M. Lines, H. Hwang, S. Sp lter, R. Slusher, S.-W. Cheong, J. Sanghera, and I. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).

[42] Y. Lin, J. Zhang, E. Kumacheva, and E. Sargent, “Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films,” J. Mater. Sci. 39, 993–996 (2004).

Lili Miao, Yaqin Jiang, Shunbin Lu, Bingxin Shi, Chujun Zhao, Han Zhang, Shuangchun Wen. Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime[J]. Photonics Research, 2015, 3(5): 05000214.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!