光学 精密工程, 2019, 27 (1): 156, 网络出版: 2019-04-06   

磁致伸缩液位传感器双检测线圈温度补偿与噪声抑制

Temperature compensation and noise suppression for magnetostrictive liquid level sensor using double detection coils
孙英 1,2郑岩 1,2翁玲 1,2刘非 1,2
作者单位
1 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室, 天津 300130
2 河北工业大学 河北省电磁场与电器可靠性重点实验室, 天津 300130
摘要
为了校正扭转波速度、补偿温度、抑制脉冲电流噪声以及提高输出信号的信噪比, 设计了一种双检测线圈结构应用于磁致伸缩液位传感器。推导了扭转波速度与温度的数学模型, 得到了扭转波速度随温度的变化趋势; 分析了单检测线圈结构存在温度影响测量结果与脉冲电流幅值大等问题。通过理论分析, 最终的实验结果表明, 与单检测线圈结构相比, 双检测线圈结构能够快速计算扭转波速度, 补偿温度对测量结果的影响, 将脉冲电流噪声信号幅值降低至原来的1/27, 测量误差由原来的0.18 mm降低至0.02 mm。双检测线圈结构为磁致伸缩液位传感器优化设计提供了理论指导。
Abstract
To correct the torsional wave velocity, compensate for the effect of temperature, suppress the pulse current noise, and improve the signal-to-noise ratio of the output signal, a double detection coil structure was designed for a magnetostrictive liquid level sensor. A mathematical model of the torsional wave velocity and temperature was derived, and the relationship between them obtained. The temperature affected the measurement results and the amplitude of pulse current was seen to be larger; these issues of single coil structures were analyzed. The theoretical analysis and experimental results show that, compared with the single detection coil structure, the double detection coil structure leads to faster calculations of the torsional wave velocity and compensates for the effect of temperature on the measurement results. The amplitude of the pulse current noise signal is reduced to the original 1/27, and the measurement error is reduced from the original 0.18 to 0.02 mm. The double detection coil structure provides theoretical guidance for the optimal design of magnetostrictive liquid level sensors.
参考文献

[1] 孙英, 靳辉, 郑奕, 等.磁致伸缩液位传感器检测信号影响因素分析及实验研究[J].传感技术学报, 2015, 28(11): 1607-1613.

    SUN Y, JIN H, ZHENG Y, et al.. Detective signal influence factor analysis and experimental research of magnetostrictive liquid level sensor[J].Chinese Journal of Sensor and Actuators, 2015, 28(11): 1607-1613. (in Chinese)

[2] 周新志, 余超, 熊胤琪, 等.新型 Fe83Ga17波导丝在磁致伸缩位移传感器中的应用[J].重庆大学学报, 2013, 36(5): 64-69.

    ZHOU X ZH, YU CH, XIONG Y Q, et al.. Application of Fe83Ga17 line to magnetostrictive displacement sensors[J]. Journal of Chongqing University, 2013, 36(5): 64-69. (in Chinese)

[3] 周翟和, 汪丽群, 沈超, 等.基于CPLD的磁致伸缩高精度时间测量系统设计[J].仪器仪表学报, 2014, 35(1): 103-108.

    ZHOU ZH H, WANG L Q, SHEN CH, et al.. Design of magnetostrictive high-precision time measurement system based on CPLD[J]. Chinese Journal of Scientific Instrument, 2014, 35(1): 103-108. (in Chinese)

[4] 王博文, 谢新良, 周露露, 等.Fe-Ga磁特性测试装置改进与动态磁致伸缩实验[J]. 光学 精密工程, 2017, 25(9): 2396-2404.

    WANG B W, XIE X L, ZHOU L L, et al.. Improvement of testing device for Fe-Ga magnetic properties and dynamic magnetostrictive experiment[J]. Opt. Precision Eng., 2017, 25(9): 2396-2404. (in Chinese)

[5] 张露予, 王博文, 翁玲, 等.螺旋磁场作用下磁致伸缩位移传感器的输出电压模型及实验[J].电工技术学报, 2015, 30(12): 21-26.

    ZHANG L Y, WANG B W, WENG L, et al.. The output voltage model of magnetostrictive displacement sensor in helical magnetic fields and its experimental study[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 21-26.(in Chinese)

[6] DENG CH, KANG Y H, LI E L, et al.. A new model of the signal generation mechanism on magnetostrictive position sensor[J]. Measurement, 2014, 47(7) : 591-597.

[7] 代前国, 周新志.大位移磁致伸缩传感器的弹性波建模与分析[J].传感技术学报, 2013, 26(2): 195-199.

    DAI Q G, ZHOU X ZH. Modeling and analysis of elastic wave of large-range magnetostrictive displacement sensor[J].Chinese Journal of Sensor and Actuators, 2013, 26(2): 195-199. (in Chinese)

[8] 孙英, 边天元, 王硕, 等.偏置磁场对磁致伸缩液位传感器检测电压的影响[J].光学 精密工程, 2016, 24(11): 2783-2791.

    SUN Y, BIAN T Y, WANG SH, et al.. Influence of bias magnetic field on detection voltage of magnetostrictive liquid level sensor[J]. Optics and Precision Engineering, 2016, 24(11): 2783-2791. (in Chinese)

[9] ZHANG L Y, WANG B W, SUN Y, et al.. Analysis of output characteristic model of magnetostrictive displacement sensor under a helical magnetic field and stress[J].IEEE Transactions on Applied Superconductivity, 2016, 26(4) : 1-4.

[10] HUANG L. A new model of the signal generation mechanism on magnetostrictive position sensor[J].Measurement, 2014, 47(1) : 591-597.

[11] 王博文, 张露予, 王鹏, 等.磁致伸缩位移传感器检测信号分析[J].光学 精密工程, 2016, 24(2): 358-364.

    WANG B W, ZHANG L Y, WANG P, et al.. Analysis of detection signal for magnetostrictive displacement sensor[J]. Opt. Precision Eng., 2016, 24(2): 358-364. (in Chinese)

[12] 陶若杰, 赵辉, 刘伟文, 等.双丝差动型磁致伸缩位移传感器结构设计[J].传感技术学报, 2010, 23(6): 799-802.

    TAO R J, ZHAO H, LIU W W, et al.. Designment of bi-waveguide differential magnetostrictive displacement sensor[J]. Chinese Journal of Sensor and Actuators, 2010, 23(6): 799-802. (in Chinese)

[13] 于希文, 赵辉, 刘伟文, 等.磁致伸缩位移传感器感应信号的分析调理[J].大连交通大学学报, 2013, 34(3): 56-60.

    YV X W, ZHAO H, LIU W W, et al.. The analysis of the magnetostrictive displacement sensor induction signal[J]. Journal of Da lian Jiaotong University, 2013, 34(3): 56-60. (in Chinese)

[14] 冯希辰, 周新志, 余超.磁致伸缩位移传感器回波信号滤波器设计[J].传感器与微系统, 2013, 32(6): 104-107.

    FENG X CH, ZHOU X ZH, YU CH. Filters design for echo signal of magnetostrictive displacement sensors[J]. Transducer and Microsystem Technologies, 2013, 32(6): 104-107. (in Chinese)

[15] 谢新良, 张露予, 王博文, 等.Fe-Ga磁致伸缩位移传感器驱动电流位置调整与回波速度校正[J].传感技术学报, 2017, 30(1): 109-114.

    XIE X L, ZHANG L Y, WANG B W, et al.. Adjustment of drive current position and correction of echo wave speed of the Fe-Ga magnetostrictive displacement sensor[J]. Chinese Journal of Sensor and Actuators, 2017, 30(1): 109-114. (in Chinese)

[16] 李永波, 胡旭东, 曾宗云.温度对磁致伸缩液位传感器测量精度的影响[J].工业仪表与自动化装置, 2007(6): 11-13.

    LI Y B, HU X D, ZENG Z Y. The temperature effect on the measuring accuracy of a magnetostrictive liquid lever sensor[J]. Industrial Instrumentation and Automation, 2007(6): 11-13. (in Chinese)

[17] 毛君, 谢春雪, 孟洋, 等.磁致伸缩液位传感器温度补偿方法研究[J].控制工程, 2015, 22(5): 921-926.

    MAO J, XIE C X, MENU Y, et al.. Study on magnetostrictive liquid level sensor temperature compensation method[J]. Control Engineering of china, 2015, 22(5): 921-926. (in Chinese)

[18] 徐志东, 范子亮.金属材料的弹性模量随温度变化规律的唯象解释[J].西南交通大学学报, 1993(2): 87-92.

    XU ZH D, FAN Z L. A phenomenological explanation of the variation of elastic modulus with temperature for metallic materials[J]. Journal of Southwest Jiaotong University, 1993(2): 87-92. (in Chinese)

[19] 刘彤, 刘敏珊.金属材料弹性常数与温度关系的理论解析[J].机械工程材料, 2014, 38(3): 85-89,95.

    LIU T, LIU M SH. Theoretical analysis of the relationship between elastic constants of metals and temperatures[J]. Materials for Mechanical Engineering, 2014, 38(3): 85-89,95. (in Chinese)

孙英, 郑岩, 翁玲, 刘非. 磁致伸缩液位传感器双检测线圈温度补偿与噪声抑制[J]. 光学 精密工程, 2019, 27(1): 156. SUN Ying, ZHENG Yan, WENG Ling, LIU Fei. Temperature compensation and noise suppression for magnetostrictive liquid level sensor using double detection coils[J]. Optics and Precision Engineering, 2019, 27(1): 156.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!