中国激光, 2018, 45 (2): 0207010, 网络出版: 2018-02-28   

双光子荧光寿命成像在肿瘤诊断研究中的应用 下载: 2378次特邀综述

Applications of Two-Photon Excitation Fluorescence Lifetime Imaging in Tumor Diagnosis
作者单位
1 中国科学院深圳先进技术研究院生物医学光学与分子影像研究室, 广东 深圳 518055
2 北京大学深圳医院消化内科, 广东 深圳 518036
引用该论文

李慧, 夏先园, 陈廷爱, 余佳, 李曦, 郑炜. 双光子荧光寿命成像在肿瘤诊断研究中的应用[J]. 中国激光, 2018, 45(2): 0207010.

Li Hui, Xia Xianyuan, Chen Tingai, Yu Jia, Li Xi, Zheng Wei. Applications of Two-Photon Excitation Fluorescence Lifetime Imaging in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 0207010.

参考文献

[1] Ntziachristos V. Going deeper than microscopy: The optical imaging frontier in biology[J]. Nature Methods, 2010, 7(8): 603-614.

[2] Nienhaus K, Nienhaus G U. Where do we stand with super-resolution optical microscopy?[J]. Journal of Molecular Biology, 2016, 428(2): 308-322.

[3] 张祥翔. 现代显微成像技术综述[J]. 光学仪器, 2015, 37(6): 550-560.

    Zhang X X. Imaging technology in modern microsystems[J]. Optical Instruments, 2015, 37(6): 550-560.

[4] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

[5] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.

[6] Pittet M J, Weissleder R. Intravital imaging[J]. Cell, 2011, 147(5): 983-991.

[7] Zipfel W R, Williams R M, Christie R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation[J]. Proceedings of the National Academy of Sciences, 2003, 100(12): 7075-7080.

[8] Wang B G, König K, Halbhuber K J. Two-photon microscopy of deep intravital tissues and its merits in clinical research[J]. Journal of Microscopy, 2010, 238(1): 1-20.

[9] Kantere D, Guldbrand S, Paoli J. et al. Anti-stokes fluorescence from endogenously formed protoporphyrin IX—implications for clinical multiphoton diagnostics[J]. Journal of Biophotonics, 2013, 6(5): 409-415.

[10] Berezin M Y, Achilefu S. Fluorescence lifetime measurements and biological imaging[J]. Chemical Reviews, 2010, 110(5): 2641-2684.

[11] Marcu L. Fluorescence lifetime techniques in medical applications[J]. Annals of Biomedical Engineering, 2012, 40(2): 304-331.

[12] Chorvat D, Chorvatova A. Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues[J]. Laser Physics Letters, 2009, 6(3): 175-193.

[13] BeckerW, BergmannA. Handbook of biomedical nonlinear optical microscopy[M]. Oxford: Oxford University Press, 2008: 499- 556.

[14] Lakowicz JR. Principles of fluorescence spectroscopy[M]. 3rd ed. New York: Springer, 2006.

[15] König K. Clinical multiphoton tomography[J]. Journal of Biophotonics, 2008, 1(1): 13-23.

[16] Seah L K, Wang P, Murukeshan V M. et al. Application of fluorescence lifetime imaging (FLIM) in latent finger mark detection[J]. Forensic Science International, 2006, 160(2/3): 109-114.

[17] Pan W, Qu J, Chen T. et al. FLIM and emission spectral analysis of caspase-3 activation inside single living cell during anticancer drug-induced cell death[J]. European Biophysics Journal, 2009, 38(4): 447-456.

[18] FanS, PengX, LiuL, et al. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging[C]. SPIE, 2014, 8948: 89482E.

[19] 范顺萍, 彭晓, 陆原, 等. 基于双光子激发荧光与荧光寿命成像的基底细胞癌诊[ C]∥广东省生物物理学会2013年学术研讨会论文集. 广州:[s.n.], 2013: 91- 92.

[20] Pliss A, Peng X, Liu L. et al. Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging[J]. Theranostics, 2015, 5(9): 919-930.

[21] Niesner R, Gericke K H. Fluorescence lifetime imaging in biosciences: Technologies and applications[J]. Frontiers of Physics in China, 2008, 3(1): 88-104.

[22] BeckerW. Advanced time-correlated single-photon counting techniques[M]. Berlin: Springer, 2005.

[23] Teh S K, Zheng W, Li S. et al. Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia[J]. Journal of Biomedical Optics, 2013, 18(3): 036001.

[24] Koppenol W H, Bounds P L, Dang C V. Otto Warburg's contributions to current concepts of cancer metabolism[J]. Nature Reviews Cancer, 2011, 11(5): 325-337.

[25] Wu Y, Zheng W, Qu J Y. Sensing cell metabolism by time-resolved autofluorescence[J]. Optics Letters, 2006, 31(21): 3122-3124.

[26] Bird D K, Yan L, Vrotsos K M. et al. Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH[J]. Cancer Research, 2005, 65(19): 8766-8773.

[27] Chance B, Schoener B, Oshino R. et al. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals[J]. Journal of Biological Chemistry, 1979, 254: 4764-4771.

[28] Chance B, Cohen P, Jobsis F. et al. Intracellular oxidation-reduction states in vivo[J]. Science, 1962, 137(3529): 499-508.

[29] Galeotti T, Mayer D H, et al. On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues[J]. European Journal of Biochemistry, 1970, 17(3): 485-496.

[30] Lakowicz J R, Szmacinski H, Nowaczyk K. et al. Fluorescence lifetime imaging of free and protein-bound NADH[J]. Proceedings of the National Academy of Sciences, 1992, 89(4): 1271-1275.

[31] Colditz M J, Leyen K, Jeffree R L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: Theoretical, biochemical and practical aspects[J]. Journal of Clinical Neuroscience, 2012, 19(12): 1611-1616.

[32] Kantelhardt S R, Leppert J, Krajewski J. et al. Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo[J]. Neuro-Oncology, 2007, 9(2): 103-112.

[33] Skala M C, Riching K M, Gendron-Fitzpatrick A. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19494-19499.

[34] Leppert J, Krajewski J, Kantelhardt S R. et al. Multiphoton excitation of autofluorescence for microscopy of glioma tissue[J]. Neurosurgery, 2006, 58(4): 759-767.

[35] Provenzano P P, Rueden C T, Trier S M. et al. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer[J]. Journal of Biomed Optics, 2008, 13(3): 031220.

[36] Russell J A, Diamond K R, Collins T J. et al. Characterization of fluorescence lifetime of photofrin and delta-aminolevulinic acid induced protoporphyrin IX in living cells using single- and two-photon excitation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 158-166.

[37] Kantelhardt S R, Diddens H, Leppert J. et al. Multiphoton excitation fluorescence microscopy of 5-aminolevulinic acid induced fluorescence in experimental gliomas[J]. Lasers in Surgery and Medicine, 2008, 40(4): 273-281.

[38] Zhang SX. An atlas of histology[M]. New York: Springer-Verlag New York, 1999.

[39] Chen W, Zheng R, Baade P D. et al. Cancer statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115-132.

[40] Torre L A, Bray F, Siegel R L. et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87-108.

[41] Rück A, Hauser C, Mosch S. et al. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells[J]. Journal of Biomedical Optics, 2014, 19(9): 96005.

[42] Skala M C, Riching K M, Bird D K. et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia[J]. Journal of Biomedical Optics, 2007, 12(2): 024014.

[43] Shen Y F, Tsai M R, Chen S C. et al. Imaging endogenous bilirubins with two-photon fluorescence of bilirubin dimers[J]. Analytical Chemistry, 2015, 87(15): 7575-7582.

[44] Lakner P H, Monaghan M G, Moller Y. et al. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models[J]. Scientific Reports, 2017, 7: 42730.

[45] Adur J, Pelegati V B, Bianchi M, et al. Multimodal nonlinear optical microscopy used to discriminate human colon cancer[C]. 8588: UNSP 85881[J], 2013.

[46] Li X, Li H, He X, et al. Spectrum- and time-resolved endogenous multiphoton signals reveal quantitative differentiation of premalignant and malignant gastric mucosa[J]. Biomedical Optics Express, 2018, 9(2): 453-471.

[47] Bekelis K, Valdés P A, Erkmen K. et al. Quantitative and qualitative 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in skull base meningiomas[J]. Neurosurgical Focus, 2011, 30(5): E8.

[48] Barone D G, Lawrie T A. 1(1): CD009685[J]. Hart M G. Image guided surgery for the resection of brain tumours. Cochrane Database of Systematic Reviews, 2014.

[49] Kantelhardt S R, Kalasauskas D, Konig K. et al. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue[J]. Journal of Neuro-Oncology, 2016, 127(3): 473-482.

[50] Zanello M, Poulon F, Varlet P. et al. Multimodal optical analysis of meningioma and comparison with histopathology[J]. Journal of Biophotonics, 2017, 10(2): 253-263.

[51] Stewart BW, Wild CP. World cancer report 2014[M]. [ S.l.]: WHO Press, 2015.

[52] American cancersociety. Cancer facts & figures 2017[M]. Atlanta: American Cancer Society, 2017.

[53] Mohan S V. Chang A L S. Advanced basal cell carcinoma: Epidemiology and therapeutic innovations[J]. Current Dermatology Reports, 2014, 3(1): 40-45.

[54] Pastore M N, Studier H, Bonder C S. et al. Non-invasive metabolic imaging of melanoma progression[J]. Experimental Dermatology, 2017, 26(7): 607-614.

[55] Seidenari S, Arginelli F, Dunsby C. et al. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics[J]. Experimental Dermatology, 2012, 21(11): 831-836.

[56] Dimitrow E, Riemann I, Ehlers A. et al. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis[J]. Experimental Dermatology, 2009, 18(6): 509-515.

[57] Dancik Y, Favre A, Loy C J. et al. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo[J]. Journal of Biomedical Optics, 2013, 18(2): 26022.

[58] CicchiR, Sestini S, de Giorgi V, et al. Multidimensional two-photon imaging of diseased skin[C]. SPIE, 2008, 6859: 85903.

[59] RiemannI, Ehlers A, le Harzic R, et al. Non-invasive analysis/diagnosis of human normal and melanoma skin tissues with two-photon FLIM in vivo[C]. SPIE, 2008, 6842: 684205.

[60] Patalay R, Talbot C, Alexandrov Y. et al. Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas[J]. Plos One, 2012, 7(9): e43460.

[61] Patalay R, Talbot C, Alexandrov Y. et al. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels[J]. Biomedical Optics Express, 2011, 2(12): 3295-3308.

[62] CicchiR, Sestini S, de Giorgi V, et al. Time-resolved multiphoton imaging of basal cell carcinoma[C]. SPIE, 2007, 6442: 64421I.

[63] de Giorgi V, Massi D, Sestini S, et al. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: First experiences[J]. Journal of the European Academy of Dermatology and Venereology, 2009, 23(3): 314-316.

[64] PatalayR, TalbotC, AlexandrovY, et al. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography[C]. SPIE, 2011, 8087: UNSP808718.

[65] Roberts M S, Dancik Y, Prow T W. et al. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77(3): 469-488.

[66] König K, Ehlers A, Riemann I. et al. Clinical two-photon microendoscopy[J]. Microscopy Research and Technique, 2007, 70(5): 398-402.

[67] Datta R, Heylman C, George S C. et al. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes[J]. Biomedical Optics Express, 2016, 7(5): 1690-1701.

李慧, 夏先园, 陈廷爱, 余佳, 李曦, 郑炜. 双光子荧光寿命成像在肿瘤诊断研究中的应用[J]. 中国激光, 2018, 45(2): 0207010. Li Hui, Xia Xianyuan, Chen Tingai, Yu Jia, Li Xi, Zheng Wei. Applications of Two-Photon Excitation Fluorescence Lifetime Imaging in Tumor Diagnosis[J]. Chinese Journal of Lasers, 2018, 45(2): 0207010.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!