Photonics Research, 2018, 6 (12): 12001151, Published Online: Dec. 3, 2018   

Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry Download: 521次

Author Affiliations
1 National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
2 Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
3 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4 Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
5 Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
6 Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
7 Key Laboratory of Ministry of Education for Optoelectronic Devices and Systems, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
8 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
Copy Citation Text

Yiwen Sun, Riccardo Degl’Innocenti, David A. Ritchie, Harvey E. Beere, Long Xiao, Michael Ruggiero, J. Axel Zeitler, Rayko I. Stantchev, Danni Chen, Zhengchun Peng, Emma MacPherson, Xudong Liu. Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry[J]. Photonics Research, 2018, 6(12): 12001151.

References

[1] W. L. Chan, J. Deibel, D. M. Mittleman. Imaging with terahertz radiation. Rep. Prog. Phys., 2007, 70: 1325-1379.

[2] C. Yu, S. Fan, Y. Sun, E. Pickwell-MacPherson. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg., 2012, 2: 33-45.

[3] C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, M. Koch. Terahertz imaging: applications and perspectives. Appl. Opt., 2010, 49: E48-E57.

[4] F. Ferri, D. Magatti, L. Lugiato, A. Gatti. Differential ghost imaging. Phys. Rev. Lett., 2010, 104: 253603.

[5] B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, M. Padgett. 3D computational imaging with single-pixel detectors. Science, 2013, 340: 844-847.

[6] R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, E. Hendry. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv., 2016, 2: e1600190.

[7] R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. M. Keller, A. Cathelin, A. Kaiser, U. R. Pfeiffer. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits, 2012, 47: 2999-3012.

[8] I. Escorcia, J. Grant, J. Gough, D. R. S. Cumming. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett., 2016, 41: 3261-3264.

[9] X. Liu, E. P. J. Parrott, B. S.-Y. Ung, E. Pickwell-MacPherson. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light. APL Photon., 2016, 1: 076103.

[10] R. Degl’Innocenti, D. S. Jessop, C. W. Sol, L. Xiao, S. J. Kindness, H. Lin, J. A. Zeitler, P. Braeuninger-Weimer, S. Hofmann, Y. Ren. Fast modulation of terahertz quantum cascade lasers using graphene loaded plasmonic antennas. ACS Photon., 2016, 3: 464-470.

[11] M. Chen, F. Fan, L. Yang, X. Wang, S. Chang. Tunable terahertz amplifier based on slow light edge mode in graphene plasmonic crystal. IEEE J. Quantum Electron., 2017, 53: 8500106.

[12] F. Fan, S. Chen, W. H. Gu, X. H. Wang, S. J. Chang. Active terahertz plasmonic crystal waveguide based on double-structured Schottky grating arrays. Appl. Phys. Lett., 2014, 105: 151110.

[13] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, M. Koch. Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators. J. Appl. Phys., 2009, 105: 093707.

[14] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun., 2012, 3: 780.

[15] D. S. Jessop, S. J. Kindness, L. Xiao, P. Braeuninger-Weimer, H. Lin, Y. Ren, C. Ren, S. Hofmann, J. A. Zeitler, H. E. Beere. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Appl. Phys. Lett., 2016, 108: 171101.

[16] G. Liang, X. Hu, X. Yu, Y. Shen, L. H. Li, A. G. Davies, E. H. Linfield, H. K. Liang, Y. Zhang, S. F. Yu, Q. J. Wang. Integrated terahertz graphene modulator with 100% modulation depth. ACS Photon., 2015, 2: 1559-1566.

[17] W. Gao, J. Shu, K. Reichel, D. V. Nickel, X. He, G. Shi, R. Vajtai, P. M. Ajayan, J. Kono, D. M. Mittleman. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett., 2014, 14: 1242-1248.

[18] B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena. Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett., 2012, 12: 4518-4522.

[19] Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, H. Yang. Graphene terahertz modulators by ionic liquid gating. Adv. Mater., 2015, 27: 1874-1879.

[20] S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, F. Wang. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures. Nano Lett., 2014, 15: 372-377.

[21] Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, L. Zhou. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 2015, 5: 041027.

[22] A. Novitsky, A. M. Ivinskaya, M. Zalkovskij, R. Malureanu, P. U. Jepsen, A. V. Lavrinenko. Non-resonant terahertz field enhancement in periodically arranged nanoslits. J. Appl. Phys., 2012, 112: 074318.

[23] X. Liu, Z. Chen, E. P. Parrott, B. S. Y. Ung, J. Xu, E. Pickwell-MacPherson. Graphene based terahertz light modulator in total internal reflection geometry. Adv. Opt. Mater., 2017, 5: 1600697.

[24] X. Liu, X. Chen, E. P. J. Parrott, E. Pickwell-MacPherson. Exploiting a metal wire grating in total internal reflection geometry to achieve achromatic polarization conversion. Photon. Res., 2017, 5: 299-304.

[25] X. Liu, X. Chen, E. P. J. Parrott, C. Han, G. Humbert, A. Crunteanu, E. Pickwell-MacPherson. Invited article: an active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry. APL Photon., 2018, 3: 051604.

[26] S. Bauer. Optical properties of a metal film and its application as an infrared absorber and as a beam splitter. Am. J. Phys., 1992, 60: 257-261.

[27] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666-669.

[28] D. Shrekenhamer, C. M. Watts, W. J. Padilla. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express, 2013, 21: 12507-12518.

[29] C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, W. J. Padilla. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics, 2014, 8: 605-609.

Yiwen Sun, Riccardo Degl’Innocenti, David A. Ritchie, Harvey E. Beere, Long Xiao, Michael Ruggiero, J. Axel Zeitler, Rayko I. Stantchev, Danni Chen, Zhengchun Peng, Emma MacPherson, Xudong Liu. Graphene-loaded metal wire grating for deep and broadband THz modulation in total internal reflection geometry[J]. Photonics Research, 2018, 6(12): 12001151.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!