光子学报, 2017, 46 (9): 0916004, 网络出版: 2017-10-16  

用GGA+U法研究稀土掺杂对ZnO电子结构磁性和光学性质的影响

GGA+U Study on the Effects of Electronic Structures, Magnetic and Optical Properties of ZnO Doped with Rare Earth
作者单位
1 西安理工大学 材料与工程学院, 西安 710048
2 宝鸡文理学院 物理与光电技术学院, 陕西 宝鸡 721016
3 西北工业大学 理学院, 西安 710072
摘要
基于自旋密度泛函理论框架下的广义梯度近似平面波模守恒赝势方法, 确定了准确计算Zn16O16超晶胞各原子对应的U值; 通过计算形成能和化学键的布局分析了掺杂结构的稳定性; 通过原子电荷布局和自旋电子态密度的计算分析了掺杂结构的能带结构和磁性状态; 讨论了各稀土原子掺杂对ZnO吸收光谱的影响. 结果表明: 稀土元素的引入使晶格膨胀, Zn-O键最长键增大而最小键减小, 导致氧四面体畸变; Y/La/Ce掺杂的ZnO具有亚铁磁性,Th掺杂ZnO则呈弱铁磁性, Ac掺杂ZnO为顺磁体; 稀土元素使ZnO的价带和导带下移, 费米能级进入导带, 增强了体系的电导率; Y/La/Ac掺杂对ZnO带隙宽度的影响较小, 吸收光谱略微蓝移, 而Ce /Th掺杂则有效提升了ZnO对可见光的吸收.
Abstract
Based on the rst-principles plane-wave norm conserving pseudopotential of the spin-polarized density functional theory(DFT), we determined the U value of each atom for the Zn16O16 supercell via the method of generalized gradient approximation(GGA+U). The stability of the mixed structure is analyzed by calculating the formation energy and chemical bond Population. The energy band structure and the magnetic state of each doped structure is analyzed by calculating the atomic charge Population and spin electronic state density. Finally The effects of each rare earth element on the absorption spectrum of ZnO are discussed. The calculated results show that the lattice is expanded by the introduction of rare earth elements, the longest Zn-O bond increases and the shortest Zn-O bond decreases, which leads to distortion of oxygen tetrahedron. Y/La/Ce doped ZnO possesses ferrimagnetism, Th doped ZnO exhibits weak ferromagnetism, and Ac doped ZnO is paramagnetic body. Rare earth elements make the valence band and conduction band of ZnO down, make Fermi energy level enter the conduction band, and meanwhile enhance the conductivity of the system. The effect of Y/La /Ca doping on the ZnO band-gap is small, and the absorption spectrum is slightly blue-shifted, while visible light absorption coefficient of ZnO is effectively improved because Ce/Th is doped.
参考文献

[1] BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17): 2230-2232.

[2] YU P, TANG Z K, WONG G K L, et al. 1996 23nd Int. Conf. On the physics of Semiconductor World Scientific[C]. Singapore, July 22-26, 1996, 2 p1453.

[3] BAGNALL D M, CHEN Y F, ZHU Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers[J]. Applied Physics Letters, 1998, 73(8): 1038-1040.

[4] VISPUTE R D, TALYANSKY V, CHOOPUN S, et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices[J]. Applied Physics Letters, 1998, 73(3): 348-350.

[5] LI Y J, HEO Y W, KWON Y, et al. Transport properties of p-type phosphorus-doped (Zn, Mg) O grown by pulsed-laser deposition[J]. Applied Physics Letters, 2005, 87(7): 2101.

[6] VAITHIANATHAN V, LEE B T, CHANG C H, et al. Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy[J]. Applied Physics Letters, 2006, 88(11): 112103.

[7] WANG G, CHU S, ZHAN N, et al. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection[J]. Applied Physics Letters, 2011, 98(4): 041107.

[8] 张金奎,邓胜华,金慧, 等. ZnO电子结构和p型传导特性的第一性原理研究[J].物理学报,2007,56: 5371.

    ZHANG Jin-kui, DENG Shen-hua, JIN Hui, et al. First-principlestudy on the electronic structure and p-type conductivity of ZnO [J]. Acta Physica Sinica, 2007,56: 5371.

[9] 王爱华,张丽伟,张兵临, 等. 过渡金属掺杂ZnO稀磁半导体铁磁特性研究进展[J].人工晶体学报, 2008, 37(1):114-123.

    WANG Ai-hua, ZHANG Li-wei, ZHANG Bin-lin, et al. Recent progress in developing ferromagnetic properties of transition-metal-doped ZnO diluted magnetic semiconductors[J]. Journal of Synthetic Crystals, 2008, 37(1): 114-123.

[10] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响[J].物理学报,2015, 64:157101.

    XU Zhen-chao, HOU Qing-yu. GGA+U study on the effects of Ag doping on theelectronic structures and absorption spectra of ZnO[J],Acta Physica Sinica, 2015, 64 (15): 157101.

[11] SUN Y, SHEN Z, XIN S, et al. Ultrafine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2017, 224: 561-570.

[12] YAO C B, ZHANG K X, WEN X, et al. Morphologies, field-emission and ultrafast nonlinear optical behavior of pure and Ag-doped ZnO nanostructures[J]. Journal of Alloys and Compounds, 2017, 698: 284-290.

[13] BHUSHAN S, PANDEY A N, KAZA B R. Photo-and electroluminescence of undoped and rare earth doped ZnO electroluminors[J]. Journal of Luminescence, 1979, 20(1): 29-38.

[14] ILICAN S. Structural, optical and electrical properties of erbium-doped ZnO thin films prepared by spin coating method[J]. Journal of Nanoelectronics and Optoelectronics, 2016, 11(4): 465-471.

[15] LANG J, LI X, YANG J, et al. Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method[J]. Applied Surface Science, 2011, 257(22): 9574-9577.

[16] MINAMI T, YAMAMOTO T, MIYATA T. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering[J]. Thin Solid Films, 2000, 366(1): 63-68.

[17] KAUR R, SINGH A V, MEHRA R M. Development of highly transparent and conducting yttrium-doped ZnO films: the role of sol-gel stabilizers[J]. Materials Science-Wroclaw, 2004, 22(3): 201-210.

[18] ALAM U, KHAN A, RAZA W, et al. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity[J]. Catalysis Today, 2017, 284: 169-178.

[19] 吴玉喜, 胡智向, 顾书林, 等. 稀土元素(Y,La)掺杂ZnO的电子结构和光学性质[J].物理学报,2011,60: 017101.

    WU Yu-xi, HU Zhi-xiang, GU Shu-lin, et al. Electronic structure and optical properties of rare earth element (Y,La) doped in ZnO[J]. Acta Physica Sinica, 2011, 60: 017101.

[20] 李泓霖, 张仲, 吕英波, 等. 第一性原理研究稀土掺杂ZnO结构的光电性质[J]. 物理学报, 2013,62: 017101.

    LI Hong-lin, ZHANG Zhong, LU Yin-bo, et al. First principles study on the electronic and optical properties of ZnO doped with rare earth[J]. Acta Physica Sinica, 2013, 62: 047101.

[21] 余长林, 杨凯, 余济美, 等. 稀土Ce掺杂对ZnO结构和光催化性能的影响[J]. 物理化学学报, 2011, 27 (2): 505-512.

    YU Chang-lin, YANG Kai, YU J C, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Physico-Chimica Sinica, 2011, 27 (2): 505-512.

[22] YU Q J,FU W Y,YU C L, et al. Structural, electrical and opticalproperties of yttrium-doped ZnO thin lms prepared by sol–gel method[J]. Journal of Physics D: Applied Physics, 2007, 40: 5592-5597.

[23] LAN W, LIU Y, ZHANG M, et al. Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering[J]. Materials Letters, 2007, 61(11): 2262-2265.

[24] SATO J, KOBAYASHI H, INOUE Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. II. Roles of geometric and electronic structures[J]. The Journal of Physical Chemistry B, 2003, 107(31): 7970-7975.

[25] JIA T, WANG W, LONG F, et al. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires[J]. Journal of Alloys and Compounds, 2009, 484(1): 410-415.

杨志怀, 张云鹏, 许强, 张美光, 张蓉. 用GGA+U法研究稀土掺杂对ZnO电子结构磁性和光学性质的影响[J]. 光子学报, 2017, 46(9): 0916004. YANG Zhi-huai, ZHANGYun-peng, XU Qiang, ZHANG Mei-guang, ZHANG Rong. GGA+U Study on the Effects of Electronic Structures, Magnetic and Optical Properties of ZnO Doped with Rare Earth[J]. ACTA PHOTONICA SINICA, 2017, 46(9): 0916004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!