中国激光, 2015, 42 (12): 1206004, 网络出版: 2015-12-11   

ZrO2∶Er3+/Yb3+/Li+纳米晶的上转换荧光特性与温度传感研究

Improved Upconversion Luminescence and Temperature Sensing Performance of ZrO2∶Er3+/Yb3+/Li+ Nanocrystals
作者单位
1 岭南师范学院物理科学与技术学院, 广东 湛江 524048
2 岭南师范学院化学科学与技术学院, 广东 湛江 524048
3 哈尔滨工业大学非线性光学信息处理国家重点专业实验室, 黑龙江 哈尔滨 150001
摘要
用溶胶-凝胶法制备ZrO2∶Er3+/Yb3+/Li+纳米晶,研究上转换发光强度随着Li+掺杂浓度的变化关系。根据荧光强度比测温技术,在303 K~753 K 温度区间,研究荧光峰积分强度比和荧光峰峰值比对ZrO2∶Er3+/Yb3+/Li+纳米晶测温性能的影响。当采用525和562 nm 处的峰值比时,在440 K 获得最大的测温灵敏度为0.0050 K1。
Abstract
ZrO2∶Er3+/Yb3+/Li+ nanocrystals are synthesized by sol- gel method. Li+ ions doped in ZrO2∶Er3+/Yb3+ nanocrystals can greatly enhance the upconversion luminescence intensity of Er3 + ions. And the effect of Li+ ions on enhancement of upconversion luminescenceis is discussed. The fluorescence intensity ratio of the green upconversion luminescence bands and that of the green upconversion luminescence peaks are studied as a function of temperature in a range of 303 K~753 K. The maximum sensitivity is approximately 0.0050 K- 1 at 440 K by adopting the fluorescence intensity ratio of green upconversion luminescence peaks at 525 and 562 nm . It suggests that ZrO2∶Er3+/Yb3+/Li+ nanocrystals is a suitable probe for optical temperature sensing by the fluorescence intensity ratio technique.
参考文献

[1] Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J Appl hys, 2003, 94(8): 4743-4756.

[2] Jaque D, Vetrone F. Luminescence nanothermometry[J]. Nanoscale, 2012, 4(15): 4301-4326.

[3] 程继萌, 李韦韦, 赵国营, 等. 掺镱铋酸盐玻璃近红外发光的温度特性[J]. 中国激光, 2013, 40(10): 1015001.

    Cheng Jimeng, Li Weiwei, Zhao Guoying, et al.. Temperature characteristics of near-infrared luminescence of Yb-Doped Bismuth-based glasses[J]. Chinese J Lasers, 2013, 40(10): 1015001.

[4] Berthou H, J rgensen C. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Opt Lett, 1990, 15(19): 1100- 1102.

[5] Maciel G, Menezes L D S, Gomes A, et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate glass[J]. Photonics Technol Lett, IEEE, 1995, 7(12): 1474-1476.

[6] Zhou S, Deng K, Wei X, et al.. Upconversion luminescence of NaYF4∶Yb3+, Er3+ for temperature sensing[J]. Opt Commun, 2013, 291: 138-142.

[7] Shan J, Kong W, Wei R, et al.. An investigation of the thermal sensitivity and stability of the β-NaYF4∶Yb, Er upconversion nanophosphors [J]. J Appl Phys, 2010, 107(5): 054901-054905.

[8] Dong B, Liu D, Wang X, et al.. Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3 [J]. Appl Phys Lett, 2007, 90(18): 181117.

[9] Quintanilla M, Cantelar E, Cussó F, et al.. Temperature sensing with up-converting submicron-sized LiNbO3∶Er3+/Yb3+particles[J]. Appl Phys Express, 2011, 4(3): 022601.

[10] 崔晓霞, 高飞, 候超奇, 等. 氟化镧掺钕纳米激光材料的制备及光学性能[J]. 中国激光, 2013, 40(6): 0606003.

    Cui Xiaoxia, Gao Fei, Hou Chaoqi, et al.. Synthesis and optical properties of Neodymium-doped lanthanum fluoride nano-laser materials [J]. Chinese J Lasers, 2013, 40(6): 0606003.

[11] Cruz R E D L, Torres L A D, Rojas R A R, et al.. Luminescence and visible upconversion in nanocrystalline ZrO2∶Er3+ [J]. Appl Phys Lett, 2003, 83(24): 4903-4905.

[12] Lei R, Wang H, Xu S, et al.. Enhancement of the upconversion luminescence in Y2O3∶Er3+powders by codoping with La3+ions[J]. Chin Opt Lett, 2015, 13(2): 021602.

[13] Guo H, Zhang H, Wei R, et al.. Preparation, structural and luminescent properties of Ba2Gd2Si4O13∶Eu3+ for white leds[J]. Opt Express, 2011, 19(S2): A201-A206.

[14] Chen G, Liu H, Liang H, et al.. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ions [J]. J Phys Chem C, 2008, 112(31): 12030-12036.

[15] Liu L, Wang Y, Bai Y, et al.. Effects of alkali metal ions on upconversion photoluminescence intensity of Er3+-doped Y2O3 nanocrystals [J]. Appl Phys B, 2013, 110(1): 111-115.

[16] Cates E L, Wilkinson A P, Kim J H. Delineating mechanisms of upconversion enhancement by Li+codoping in Y2SiO5∶Pr3+[J]. J Phys Chem C, 2012, 116(23): 12772-12778.

[17] Li D, Wang Y, Zhang X, et al.. Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3∶Tm3+/Yb3+ nanocrystals [J]. J Appl Phys, 2012, 112(9): 094701.

[18] Bai Y, Wang Y, Peng G, et al.. Enhance upconversion photoluminescence intensity by doping Li+ in Ho3+ and Yb3+codoped Y2O3 nanocrystals [J]. J Alloys Compd, 2009, 478(1-2): 676-678.

[19] Suyver J, Aebischer A, Revilla S G, et al.. Anomalous power dependence of sensitized upconversion luminescence[J]. Phys Rev B, 2005, 71(12): 125123.

[20] 杨魁胜, 孙浩, 梁海莲, 等. Yb3+和Er3+双掺氟氧玻璃的制备与荧光特性的研究[J]. 中国激光, 2005, 32(2): 274-276.

    Yang Kuisheng, Sun Hao, Liang Hailian, et al.. Investigation on the preparation and fluorescence properties of oxy-fluoride glass codoped with Er3+ and Yb3+[J]. Chinese J Lasers, 2005, 32(2): 274-276.

[21] 刘芳超. Er3+/Yb3+共掺氟化物颗粒的红外光谱特性及Judd-Ofelt理论分析[J]. 中国激光, 2014, 41(10): 1006002.

    Liu Fangchao. Near-infrared spectroscopic properties and Judd-Ofelt theory analysis of Er3+/Yb3+co-doped fluoride particele[J]. Chinese J Lasers, 2014, 41(10): 1006002.

[22] 裴建峰, 吴青龙, 德格吉呼. CaF2:xYb3+, yEr3+纳米颗粒的合成及其上转换发光性质[J]. 发光学报, 2014, 35(4): 448-453.

    Pei Jianfeng, Wu Qinglong, De Gejihu. Synthesis and up-conversion luminescence properties of CaF2:xYb3+, yEr3+nanoparticles[J]. Chin J Lumin, 2014, 35(4): 448-453.

[23] 于放达, 陈欢, 赵丹, 等. 利用核壳结构实现纳米颗粒的多色上转换发光[J]. 发光学报, 2014, 35(2): 165-171.

    Yu Fangda, Chen Huan, Zhao Dan, et al.. Multicolor upconversion luminescence fromcore-shell structured nanoparticles[J]. Chin J Lumin, 2014, 35(2): 165-171.

[24] Chen G, Somesfalean G, Liu Y, et al.. Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals[J]. Phys Rev B, 2007, 75(19): 195204.

[25] Shinn M D, Sibley W A, Drexhage M G, et al.. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Phy Rev B, 1983, 27(11): 6635- 6648.

[26] Li C, Dong B, Li S, et al.. Er3+-Yb3+co-doped silicate glass for optical temperature sensor[J]. Chem Phys Lett, 2007, 443(4): 426-429.

[27] Singh S K, Kumar K, Rai S B. Er3+/Yb3+codoped Gd2O3 nano-phosphor for optical thermometry[J]. Sensors Actuat A-Phys, 2009, 149(1): 16-20.

[28] Du P, Luo L, Li W, et al.. Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5 (Ba0.7Ca0.3)TiO3 ceramic[J]. Appl Phys Lett, 2014, 104(15): 152902.

[29] Dong B, Cao B, He Y, et al.. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides[J]. Adv Mater, 2012, 24(15): 1987-1993.

[30] Cao B S, He Y Y, Feng Z Q, et al.. Optical temperature sensing behavior of enhanced green upconversion emissions from Er-Mo:Yb2Ti2O7 nanophosphor[J]. Sensor Actuat B Chem, 2011, 159(1): 8-11.

李栋宇, 黄贞, 全军, 谢木标, 聂仲泉, 黄传海, 王玉晓. ZrO2∶Er3+/Yb3+/Li+纳米晶的上转换荧光特性与温度传感研究[J]. 中国激光, 2015, 42(12): 1206004. Li Dongyu, Huang Zhen, Quan Jun, Xie Mubiao, Nie Zhongquan, Huang Chuanhai, Wang Yuxiao. Improved Upconversion Luminescence and Temperature Sensing Performance of ZrO2∶Er3+/Yb3+/Li+ Nanocrystals[J]. Chinese Journal of Lasers, 2015, 42(12): 1206004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!