激光与光电子学进展, 2017, 54 (6): 062801, 网络出版: 2017-06-08  

天基、地基资料反演边界层高度比较

Comparison of Boundary Layer Heights Retrieved by Space-Based and Ground-Based Data
作者单位
兰州大学大气科学学院甘肃省干旱气候变化与减灾重点实验室, 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000
引用该论文

李红, 杨毅, 党蕊君. 天基、地基资料反演边界层高度比较[J]. 激光与光电子学进展, 2017, 54(6): 062801.

Li Hong, Yang Yi, Dang Ruijun. Comparison of Boundary Layer Heights Retrieved by Space-Based and Ground-Based Data[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062801.

参考文献

[1] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988: 13-16.

[2] 赵 鸣, 苗曼倩, 王彦昌. 边界层气象学教程[M]. 北京: 气象出版社, 1991.

    Zhao Ming, Miao Manqian, Wang Yanchang. Boundary layer meteorology tutorial[M]. Beijing: China Meteorological Press, 1991.

[3] 杨 静, 武疆艳, 李 霞, 等. 乌鲁木齐冬季大气边界层结构特征及其对大气污染的影响[J]. 干旱区研究, 2011, 28(4): 717-723.

    Yang Jing, Wu Jiangyan, Li Xia, et al. Analysis on atmospheric boundary layer structure and its effect on air pollution over Urumqi city in winter[J]. Arid Zone Research, 2011, 28(4): 717-723.

[4] Dang R, Li H, Liu Z G, et al. Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in Northwest China[J]. Advances in Meteorology, 2016(3): 1-13.

[5] Jordan N S, Hoff R M, Bacmeister J T. Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D24): 9-12.

[6] Zeng X, Brunke M A, Zhou M, et al. Marine atmospheric boundary layer height over the Eastern Pacific: data analysis and model evaluation[J]. Journal of Climate, 2004, 17(21): 4159-4170.

[7] 闫宝东, 宋小全, 陈 超, 等. 2011春季北京大气边界层的激光雷达观测研究[J]. 光学学报, 2013, 33(s1): s128001.

    Yan Baodong, Song Xiaoquan, Chen Chao, et al. Beijing atmospheric boundary layer observation with lidar in 2011 spring[J]. Acta Optica Sinica, 2013, 33(s1): s128001.

[8] 陶宗明, 吴德成, 刘 东, 等. 激光雷达反演气溶胶后向散射系数误差估算[J]. 中国激光, 2011, 38(12): 1214001.

    Tao Zongming, Wu Decheng, Liu Dong, et al. Estimation of aerosol backscatter coefficient error in lidar data processing[J]. Chinese J Lasers, 2011, 38(12): 1214001.

[9] 曹念文, 施建中, 张莹莹, 等. 南京北郊气溶胶观测[J]. 激光与光电子学进展, 2012, 49(6): 060101.

    Cao Nianwen, Shi Jianzhong, Zhang Yingying, et al. Aerosol measurements by Raman-Rayleigh-Mie lidar in north suburb area of Nanjing city[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060101.

[10] Seibert P, Beyrich F, Gryning S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027.

[11] 王 琳, 谢晨波, 韩 永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247.

    Wang Lin, Xie Chenbo, Han Yong, et al. Comparison of retrieval methods of planetary boundary layer height from lidar data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 241-247.

[12] 赵一鸣, 江月松, 张绪国, 等. 利用CALIPSO卫星数据对大气气溶胶的去偏振度特性分析研究[J]. 光学学报, 2009, 29(11): 2943-2951.

    Zhao Yiming, Jiang Yuesong, Zhang Xuguo, et al. Research on the depolarization ratio characteristic of the aerosol in the atmosphere with the CALIPSO satellite data[J]. Acta Optica Sinica, 2009, 29(11): 2943-2951.

[13] McGrath-Spangler E L, Denning A S. Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D15101): 408-414.

[14] Liu J, Huang J, Chen B, et al. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 153: 102-112.

[15] Leventidou E, Zanis P, Balis D, et al. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmospheric Environment, 2013, 74(2): 360-366.

[16] Zhang W, Augustin M, Zhang Y, et al. Spatial and temporal variability of aerosol vertical distribution based on lidar observations: a haze case study over Jinhua Basin[J]. Advances in Meteorology, 2015: 1.

[17] McGill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D20): 365-371.

[18] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): 228-262.

[19] 刘红燕, 李 炬, 曹晓彦, 等. 遥感大气结构的地基12通道微波辐射计测量结果分析[J]. 遥感技术与应用, 2007, 22(2): 222-229.

    Liu Hongyan, Li Ju, Cao Xiaoyan, et al. Characteristics of the atmosphere remote sensed by the ground-based 12-channel radiometer[J]. Remote Sensing Technology and Application, 2007, 22(2): 222-229.

[20] Huang Z, Huang J, Bi J, et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U. S. joint dust field experiment[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D7): 1307-1314.

[21] Holzworth G C. Estimates of mean maximum mixing depths in the contiguous United States[J]. Monthly Weather Review, 1951, 92(5): 235-242.

[22] Eresmaa N, Karppinen A, Joffre S M, et al. Mixing height determination by ceilometers[J]. Atmospheric Chemistry & Physics, 2005, 6(6): 12697-12722.

[23] Melfi S H, Spinhirne J D, Chou S H, et al. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Journal of Applied Meteorology, 1985, 24(8): 806-821.

[24] Menut L, Flamant C, Pelon J, et al. Urban boundary-layer height determination from lidar measurements over the Paris area[J]. Applied Optics, 1999, 38(6): 945-954.

[25] Steyn D G, Baldi M, Hoff R M. The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(7): 953-959.

[26] Davis K J, Gamage N, Hagelberg C R, et al. An objective method for deriving atmospheric structure from airborne lidar observations[J]. Journal of Atmospheric & Oceanic Technology, 2000, 17: 1455-1468.

[27] Lammert A, Bsenberg J. Determination of the convective boundary-layer height with laser remote sensing[J]. Boundary-Layer Meteorology, 2006, 119(1): 159-170.

[28] Hayden K L, Anlauf K G, Hoff R M, et al. The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific '93[J]. Atmospheric Environment, 1997, 31(14): 2089-2105.

[29] Cohn S A, Angevine W M. Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars[J]. Journal of Applied Meteorology, 2000, 39(39): 1233-1247.

[30] Brooks I M. Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(8): 1092-1105.

[31] 李 红, 马媛媛, 杨 毅. 基于激光雷达资料的小波变换法反演边界层高度的方法[J]. 干旱气象, 2015, 33(1): 78-88.

    Li Hong, Ma Yuanyuan, Yang Yi. Study on retrieval of boundary layer height using wavelet transformation method based on lidar data[J]. Journal of Arid Meteorology, 2015, 33(1): 78-88.

[32] Grimsdell A W, Angevine W M. Convective boundary layer height measurement with wind profilers and comparison to cloud base[J]. Journal of Atmospheric & Oceanic Technology, 1998, 15(6): 1331.

[33] Hennemuth B, Lammert A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J]. Boundary-Layer Meteorology, 2006, 120(1): 181-200.

李红, 杨毅, 党蕊君. 天基、地基资料反演边界层高度比较[J]. 激光与光电子学进展, 2017, 54(6): 062801. Li Hong, Yang Yi, Dang Ruijun. Comparison of Boundary Layer Heights Retrieved by Space-Based and Ground-Based Data[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062801.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!