激光与光电子学进展, 2017, 54 (6): 062801, 网络出版: 2017-06-08  

天基、地基资料反演边界层高度比较

Comparison of Boundary Layer Heights Retrieved by Space-Based and Ground-Based Data
作者单位
兰州大学大气科学学院甘肃省干旱气候变化与减灾重点实验室, 半干旱气候变化教育部重点实验室, 甘肃 兰州 730000
摘要
以兰州大学半干旱气候与环境观测站(SACOL)为研究站点,利用该站微波辐射计资料、地基微脉冲激光雷达资料以及对应的星载CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation)激光雷达(天基)资料反演边界层高度。微波辐射计温度资料采用气块法,微脉冲激光雷达后向散射信号资料采用曲线拟合法和小波变换法(Haar小波变换法与Mexican Hat小波变换法),CALIPSO Level 1散射廓线采用最大方差法与Mexican Hat小波变换法,同时利用Level 2气溶胶层产品获得边界层高度。相比于应用于微脉冲激光雷达资料,小波变换法在应用于CALIPSO Level 1资料时对小波振幅的初值更加敏感。对比三种资料反演的边界层高度,微波辐射计资料与微脉冲激光雷达资料的结果更加相近,且显示出明显的季节变化,夏季达到最大值,这也与CALIPSO Level 2的结果一致。但是利用CALIPSO Level 1资料得到的边界层高度随季节的变化不明显。
Abstract
This study aims to calculate the boundary layer height retrieved by ground-based micro-pulse lidar data, microwave radiometer data and lidar data (space-based) of corresponding space-borne CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) from the semi-arid climate observatory and laboratory of Lanzhou University (SACOL). Microwave radiometer data with parcel method, micro-pulse lidar backscatter data with curve fitting method and wavelet transform method (Haar wavelet transform method and Mexican Hat wavelet transform method), CALIPSO Level 1 scattering profile with maximum variance method and Mexican Hat wavelet transform method, and Level 2 aerosol layer product are used to calculate boundary layer height. When the wavelet transform method is used, the boundary layer height retrieved from CALIPSO Level 1 data is more sensitive to the initial value of wavelet amplitude than that from micro-pulse lidar data. For the retrieved boundary layer height, microwave radiometer data and micro-pulse lidar data are very close. The result shows apparent seasonal variation, and the boundary layer height reaches its maximum in summer. Which is the same as the retrieved result of CALIPSO Level 2 product. But the seasonal variation in boundary layer height retrieved by CALIPSO Level 1 data is not apparent.
参考文献

[1] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988: 13-16.

[2] 赵 鸣, 苗曼倩, 王彦昌. 边界层气象学教程[M]. 北京: 气象出版社, 1991.

    Zhao Ming, Miao Manqian, Wang Yanchang. Boundary layer meteorology tutorial[M]. Beijing: China Meteorological Press, 1991.

[3] 杨 静, 武疆艳, 李 霞, 等. 乌鲁木齐冬季大气边界层结构特征及其对大气污染的影响[J]. 干旱区研究, 2011, 28(4): 717-723.

    Yang Jing, Wu Jiangyan, Li Xia, et al. Analysis on atmospheric boundary layer structure and its effect on air pollution over Urumqi city in winter[J]. Arid Zone Research, 2011, 28(4): 717-723.

[4] Dang R, Li H, Liu Z G, et al. Statistical analysis of relationship between daytime lidar-derived planetary boundary layer height and relevant atmospheric variables in the semiarid region in Northwest China[J]. Advances in Meteorology, 2016(3): 1-13.

[5] Jordan N S, Hoff R M, Bacmeister J T. Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D24): 9-12.

[6] Zeng X, Brunke M A, Zhou M, et al. Marine atmospheric boundary layer height over the Eastern Pacific: data analysis and model evaluation[J]. Journal of Climate, 2004, 17(21): 4159-4170.

[7] 闫宝东, 宋小全, 陈 超, 等. 2011春季北京大气边界层的激光雷达观测研究[J]. 光学学报, 2013, 33(s1): s128001.

    Yan Baodong, Song Xiaoquan, Chen Chao, et al. Beijing atmospheric boundary layer observation with lidar in 2011 spring[J]. Acta Optica Sinica, 2013, 33(s1): s128001.

[8] 陶宗明, 吴德成, 刘 东, 等. 激光雷达反演气溶胶后向散射系数误差估算[J]. 中国激光, 2011, 38(12): 1214001.

    Tao Zongming, Wu Decheng, Liu Dong, et al. Estimation of aerosol backscatter coefficient error in lidar data processing[J]. Chinese J Lasers, 2011, 38(12): 1214001.

[9] 曹念文, 施建中, 张莹莹, 等. 南京北郊气溶胶观测[J]. 激光与光电子学进展, 2012, 49(6): 060101.

    Cao Nianwen, Shi Jianzhong, Zhang Yingying, et al. Aerosol measurements by Raman-Rayleigh-Mie lidar in north suburb area of Nanjing city[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060101.

[10] Seibert P, Beyrich F, Gryning S E, et al. Review and intercomparison of operational methods for the determination of the mixing height[J]. Atmospheric Environment, 2000, 34(7): 1001-1027.

[11] 王 琳, 谢晨波, 韩 永, 等. 测量大气边界层高度的激光雷达数据反演方法研究[J]. 大气与环境光学学报, 2012, 7(4): 241-247.

    Wang Lin, Xie Chenbo, Han Yong, et al. Comparison of retrieval methods of planetary boundary layer height from lidar data[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(4): 241-247.

[12] 赵一鸣, 江月松, 张绪国, 等. 利用CALIPSO卫星数据对大气气溶胶的去偏振度特性分析研究[J]. 光学学报, 2009, 29(11): 2943-2951.

    Zhao Yiming, Jiang Yuesong, Zhang Xuguo, et al. Research on the depolarization ratio characteristic of the aerosol in the atmosphere with the CALIPSO satellite data[J]. Acta Optica Sinica, 2009, 29(11): 2943-2951.

[13] McGrath-Spangler E L, Denning A S. Estimates of North American summertime planetary boundary layer depths derived from space-borne lidar[J]. Journal of Geophysical Research Atmospheres, 2012, 117(D15101): 408-414.

[14] Liu J, Huang J, Chen B, et al. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 153: 102-112.

[15] Leventidou E, Zanis P, Balis D, et al. Factors affecting the comparisons of planetary boundary layer height retrievals from CALIPSO, ECMWF and radiosondes over Thessaloniki, Greece[J]. Atmospheric Environment, 2013, 74(2): 360-366.

[16] Zhang W, Augustin M, Zhang Y, et al. Spatial and temporal variability of aerosol vertical distribution based on lidar observations: a haze case study over Jinhua Basin[J]. Advances in Meteorology, 2015: 1.

[17] McGill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D20): 365-371.

[18] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 2007, 34(19): 228-262.

[19] 刘红燕, 李 炬, 曹晓彦, 等. 遥感大气结构的地基12通道微波辐射计测量结果分析[J]. 遥感技术与应用, 2007, 22(2): 222-229.

    Liu Hongyan, Li Ju, Cao Xiaoyan, et al. Characteristics of the atmosphere remote sensed by the ground-based 12-channel radiometer[J]. Remote Sensing Technology and Application, 2007, 22(2): 222-229.

[20] Huang Z, Huang J, Bi J, et al. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U. S. joint dust field experiment[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D7): 1307-1314.

[21] Holzworth G C. Estimates of mean maximum mixing depths in the contiguous United States[J]. Monthly Weather Review, 1951, 92(5): 235-242.

[22] Eresmaa N, Karppinen A, Joffre S M, et al. Mixing height determination by ceilometers[J]. Atmospheric Chemistry & Physics, 2005, 6(6): 12697-12722.

[23] Melfi S H, Spinhirne J D, Chou S H, et al. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Journal of Applied Meteorology, 1985, 24(8): 806-821.

[24] Menut L, Flamant C, Pelon J, et al. Urban boundary-layer height determination from lidar measurements over the Paris area[J]. Applied Optics, 1999, 38(6): 945-954.

[25] Steyn D G, Baldi M, Hoff R M. The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles[J]. Journal of Atmospheric & Oceanic Technology, 1999, 16(7): 953-959.

[26] Davis K J, Gamage N, Hagelberg C R, et al. An objective method for deriving atmospheric structure from airborne lidar observations[J]. Journal of Atmospheric & Oceanic Technology, 2000, 17: 1455-1468.

[27] Lammert A, Bsenberg J. Determination of the convective boundary-layer height with laser remote sensing[J]. Boundary-Layer Meteorology, 2006, 119(1): 159-170.

[28] Hayden K L, Anlauf K G, Hoff R M, et al. The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific '93[J]. Atmospheric Environment, 1997, 31(14): 2089-2105.

[29] Cohn S A, Angevine W M. Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars[J]. Journal of Applied Meteorology, 2000, 39(39): 1233-1247.

[30] Brooks I M. Finding boundary layer top: application of a wavelet covariance transform to lidar backscatter profiles[J]. Journal of Atmospheric & Oceanic Technology, 2003, 20(8): 1092-1105.

[31] 李 红, 马媛媛, 杨 毅. 基于激光雷达资料的小波变换法反演边界层高度的方法[J]. 干旱气象, 2015, 33(1): 78-88.

    Li Hong, Ma Yuanyuan, Yang Yi. Study on retrieval of boundary layer height using wavelet transformation method based on lidar data[J]. Journal of Arid Meteorology, 2015, 33(1): 78-88.

[32] Grimsdell A W, Angevine W M. Convective boundary layer height measurement with wind profilers and comparison to cloud base[J]. Journal of Atmospheric & Oceanic Technology, 1998, 15(6): 1331.

[33] Hennemuth B, Lammert A. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J]. Boundary-Layer Meteorology, 2006, 120(1): 181-200.

李红, 杨毅, 党蕊君. 天基、地基资料反演边界层高度比较[J]. 激光与光电子学进展, 2017, 54(6): 062801. Li Hong, Yang Yi, Dang Ruijun. Comparison of Boundary Layer Heights Retrieved by Space-Based and Ground-Based Data[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062801.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!