激光生物学报, 2019, 28 (5): 421, 网络出版: 2019-11-14  

pH和近红外光双响应的包裹二硫化钼纳米片和阿霉素的金属-有机框架ZIF-8用于肿瘤化学/光热协同治疗

pH- and NIR Laser Dual-Responsive Metal-Organic Frameworks ZIF-8 with MoS2 Nanosheets and DOX Loading for Chemo/Photothermal Synergistic Cancer Therapy
作者单位
湖南省人民医院老年医学研究所, 长沙 410016
摘要
利用金属-有机框架材料ZIF-8包裹二硫化钼(MoS2)纳米片和阿霉素(DOX)构建一种可通过酸性pH和近红外(NIR)光双触发的肿瘤化学/光热协同治疗体系。首先, 通过水热反应和超声处理制备粒径为~100 nm、厚度为0.3~1.4 nm的MoS2纳米片。然后, 通过一步法将可酸降解的金属-有机框架ZIF-8包裹在所制备的MoS2纳米片上, 并同时装载抗肿瘤药物DOX, 形成装载DOX的ZIF-8包裹MoS2纳米复合物(DOX/MoS2@ZIF-8)。将该纳米复合物应用到肿瘤细胞的化学/光热协同治疗: 当处于酸性条件(例如: 溶酶体中pH大约为5)和NIR激光(780 nm, 2.1 W/cm2)照射的情况下, DOX/MoS2@ZIF-8纳米复合物上包裹的ZIF-8金属-有机框架会发生酸降解, 释放出所包裹的DOX, 细胞质中的DOX可以进入细胞核中诱导细胞凋亡; 同时, MoS2纳米片能够将光能转换为热能, 光致高温同样能诱导细胞凋亡, 因此, 化学/光热协同肿瘤治疗得以实现。细胞存活率试验证明: 该DOX/MoS2@ZIF-8纳米复合物在SMMC-7721细胞上表现出良好的化学/光热协同治疗作用, 能够对肿瘤细胞进行高效地杀伤。
Abstract
Here, we report a novel metal-organic framework ZIF-8-based nanocomposite with encapsulated molybdenum disulfide(MoS2)nanosheets and doxorubicin(DOX)for pH- and NIR-triggered synergistic chemo/photothermal treatment of cancer cells. First, MoS2 nanosheets, which have uniform size of ~100 nm and topological height of 0.3~1.4 nm, are synthesized by hydrothermal reaction and ultrasonic treatment. Subsequently,an acid-degradable metal-organic framework ZIF-8 is employed to synchronously encapsulate MoS2 nanosheets and anti-cancer drug DOX to obtain DOX loaded ZIF-8 coated MoS2 (DOX/MoS2@ZIF-8)nanocomposites by one-step method. The nanocomposites are used for chemo/photothermal synergistic treatment of cancer cells: under acid conditions (e.g. pH 5.0 in a lysosome)and NIR laser irradiation (780 nm, 2.1 W/cm2), the ZIF-8 of the DOX/MoS2@ZIF-8 nanocomposites can be degraded, resulting in the release of encapsulated DOX, the cytosolic DOX can enter the nucleus to induce apoptosis. Meanwhile, the MoS2 nanosheets can effectively convert NIR laser light energy into heat energy, the photoinduced hyperthermia can also induce apoptosis. Thus, chemo/photothermal synergistic cancer therapy is realized. Cell viability assays show that this DOX/MoS2@ZIF-8 nanocomposites have an excellent chemo/photothermal synergistic treatment effect on SMMC-7721 cells, which can kill the tumor cells efficiently.
参考文献

[1] FERNNDEZ M, JAVAID F, CHUDASAMA V. Advances in targeting the folate receptor in the treatment/imaging of cancers[J]. Chemical Science, 2018, 9(4): 790-810.

[2] YU N, WANG Z, ZHANG J, et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy[J]. Biomaterials, 2018, 161: 279-291.

[3] 宗智慧, 刘刚, 汪静. RGD/FA双靶纳米金棒的制备及其在肿瘤细胞协同靶向成像与光热治疗中的应用[J]. 激光生物学报, 2016, 25(4): 319-324.

    ZONG Zhihui, LIU Gang, WANG Jing. Preparation and synergistic targeted imaging and hyperthermia on tumor cell using dual targeting gold nanorods with RGD/FA[J]. Acta Laser Biology Sinica, 2016, 25(4): 319-324.

[4] NG C W, LI J, PU K. Phototherapy-synergized cancer immunotherapy: recent progresses in phototherapy-synergized cancer immunotherapy[J]. Advanced Functional Materials, 2018, 28(46): 1804688.

[5] FAN W P, YUNG B, HUANG P, et al. Nanotechnology for multimodal synergistic cancer therapy[J]. Chemical Reviews, 2017, 117(22): 13566-13638.

[6] XIE W S, GAO Q, WANG D, et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer[J]. Nano Research, 2018, 11(5): 2470-2487.

[7] VAIDHYANATHAN R, IREMONGER S, DAWSON K, et al. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures[J]. Chemical Communications, 2009, 35(35): 5230-5232.

[8] LI Y, XIE L, LI Y, et al. Metal-organic-framework-based catalyst for highly efficient H2 generation from aqueous NH3BH3 solution[J]. Chemistry-A European Journal, 2010, 15(36): 8951-8954.

[9] DUAN Y, YE F, HUANG Y, et al. One-pot synthesis of a metal-organic framework-based drug carrier for intelligent glucose-responsive insulin delivery[J]. Chemical Communications, 2018, 54(42): 5377-5380.

[10] CAI W, WANG J Q, CHU C C, et al. Metal organic framework-based stimuli-responsive systems for drug delivery[J]. Advanced Science, 6(1): 1801526.

[11] DEKRAFFT K E, BOYLE W S, BURK L M, et al. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography[J]. Journal of Materials Chemistry, 2012, 22(35): 18139-18144.

[12] ZHANG H J, CHEN W, GONG K, et al. Nanoscale zeolitic imidazolate framework-8 as efficient vehicles for enhanced delivery of CpG oligodeoxynucleotides[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31519-31525.

[13] TIAN Y M, ZHAO X, SHEN L C, et al. Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction[J]. Materials Letters, 2006, 60(4): 527-529.

[14] HUANG X, ZHENG B, LIU, Z D, et al. Coating two-dimensional nanomaterials with metal-organic frameworks[J]. ACS Nano, 8(8): 8695-8701.

[15] 刘克峰, 任丹妮, 孙辉, 等. ZIF-8的合成、表征及正己烷吸附性能[J]. 高等学校化学学报, 2016, 37(10): 1856-1862.

    LIU Kefeng, REN Danni, SUN Hui, et al. Synthesis, characterization and n-hexane adsorption performance of ZIF-8[J]. Chemical Journal of Chinese Universities, 2016, 37(10): 1856-1862.

[16] KIM H, LEE D, KIM J, et al. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide[J]. ACS Nano, 2013, 7(8): 6735-6746.

[17] GHOSH S, DUTTA S, GOMES E, et al. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes[J]. ACS Nano, 2009, 3(9): 2667-2673.

[18] MOON H K, LEE S H, CHOI H C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes[J]. ACS Nano, 2009, 3(11): 3707-3713.

[19] WANG T Z, LI S Q, ZOU Z, et al. A zeolitic imidazolate framework-8-based indocyanine green theranostic agent for infrared fluorescence imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2018, 6(23): 3914-3921.

[20] NG C W, LI J C, PU K Y. Recent progresses in phototherapy-synergized cancer immunotherapy[J]. Advanced Functional Materials, 2018, 28(46): 1804688.

[21] HARTSHORN C M, BRADBURY M S, LANZA G M, et al. Nanotechnology strategies to advance outcomes in clinical cancer care[J]. ACS Nano, 2018, 12(1): 24-43.

[22] HUA X W, BAO Y W, ZENG J, et al. Ultra-small all-in-one nanodots formed via carbon dot-mediated and albumin-based synthesis: multimodal imaging-guided and mild laser-enhanced cancer therapy[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42077-42087.

[23] ZHANG B M, WANG Y, LIU J Y, et al. Recent developments of phototherapy based on graphene family nanomaterials[J]. Current Medicinal Chemistry, 2017, 24(3): 268-291.

[24] FENG L, GAO M, TAO D, et al. Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy[J]. Advanced Functional Materials, 2016, 26(13): 2207-2217.

[25] LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer[J]. Advanced Materials, 2014, 26(21): 3433-3440.

[26] KONING G A, EGGERMONT A M, LINDNER L H, et al. Hyperthermia and thermosensitive liposomes for improved delivery of chemotherapeutic drugs to solid tumors[J]. Pharmaceutical Research, 2010, 27(8): 1750-1754.

[27] LIU T, WANG C, GU X, et al. Drug delivery with PEGylated MoS2 nanosheets for combined photothermal and chemotherapy of cancer[J]. Advanced Materials, 2014, 26(21): 3433-3440.

李璟, 彭倩, 王丽姣, 王晨旭, 杨凡. pH和近红外光双响应的包裹二硫化钼纳米片和阿霉素的金属-有机框架ZIF-8用于肿瘤化学/光热协同治疗[J]. 激光生物学报, 2019, 28(5): 421. LI Jing, PENG Qian, WANG Lijiao, WANG Chenxu, YANG Fan. pH- and NIR Laser Dual-Responsive Metal-Organic Frameworks ZIF-8 with MoS2 Nanosheets and DOX Loading for Chemo/Photothermal Synergistic Cancer Therapy[J]. Acta Laser Biology Sinica, 2019, 28(5): 421.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!