光谱学与光谱分析, 2020, 40 (4): 1137, 网络出版: 2020-07-02  

双光谱二维异步相关光谱表征分子间相互作用的可行性研究

Application of Two-Trace Two-Dimensional Asynchronous Correlation Spectroscopy in Characterizing Intermolecular Interactions: A Feasibility Study
作者单位
1 大连工业大学实验仪器中心, 辽宁 大连 116034
2 大连工业大学纺织与材料工程学院, 辽宁 大连 116034
摘要
双光谱二维异步相关光谱(2T2D-异步相关光谱)是一种利用两幅一维光谱创建异步相关光谱的新方法。 相对于最少需要三幅一维光谱的传统异步相关光谱, 2T2D-异步相关光谱可简化实验过程, 有利于样品昂贵体系的表征。 利用数学分析、 模拟及实际体系实验对2T2D-异步相关光谱应用于表征分子间相互作用的可行性进行了研究。 首先建立一个包含P和Q两种溶质的模拟体系, 设定P有光谱峰, Q没有光谱峰。 数学分析表明: (1) 不正确设置P和Q初始浓度, 可导致2T2D-异步相关光谱的强度恒为零; (2) 2T2D-异步相关光谱不能反映与分子间相互作用相关的峰强变化; 因此, 利用2T2D-异步相关光谱表征分子间相互作用可能得到错误的结论。 为将2T2D-异步相关光谱发展成为表征分子间相互作用的可靠方法, 首先对2T2D-异步相关光谱中P和Q初始浓度的设置方法进行了研究, 得出当P和Q初始浓度满足文中式(6)时, 可避免不正确设置P和Q初始浓度导致2T2D-异步相关光谱强度恒为零的情况; 在此基础上, 为解决2T2D-异步相关光谱不能反映与分子间相互作用相关的峰强变化问题, 通过向体系中加入具有独立光谱峰和适合浓度的虚拟物质S, 发展出带有辅助交叉峰的2T2D-异步相关光谱(ASAP-2T2D-异步相关光谱)。 模拟体系实验表明ASAP-2T2D-异步相关光谱可正确反映与分子间相互作用相关的峰宽、 峰位及峰强变化, 是表征分子间相互作用的可靠方法。 最后, 将ASAP-2T2D-异步相关光谱应用于表征苯并-15-冠醚-5(BC)与Li+间的相互作用, 实验结果表明ASAP-2T2D-异步相关光谱可同时反映BC特征峰的峰位及峰强变化, 进一步证实ASAP-2T2D-异步相关光谱可正确表征分子间相互作用。
Abstract
Two-trace two-dimensional (2T2D) asynchronous correlation spectroscopy is a new method of generating two-dimensional asynchronous correlation spectroscopy based on a pair of one-dimensional (1D) spectra. Compared with the conventional two-dimensional asynchronous correlation spectroscopy where at least three 1D spectra are needed, 2T2D asynchronous correlation spectroscopy makes the experiment easier, and is a better method for the expensive samples. In the present paper, the feasibility of using 2T2D asynchronous correlation spectroscopy to characterize intermolecular interactions was explored. Firstly, a model system containing two solutes P and Q were set up. P possessed a characteristic peak, and Q had no characteristic peaks. The mathematical analysis demonstrated that the intensity of 2T2D asynchronous correlation spectra was always zero when the initial concentrations of P and Q were set incorrectly. Furthermore, the variations of the absorptivity induced by intermolecular interactions could not be discerned by 2T2D-asynchronous correlation spectra. Therefore, incorrect results may be obtained when 2T2D asynchronous correlation spectroscopy is adopted to characterize intermolecular interactions. In order to develop 2T2D asynchronous correlation spectroscopy into a reliable method for characterizing intermolecular interactions, the setting method of the initial concentrations of P and Q in the 2T2D asynchronous correlation spectroscopy was first studied. The case that the intensity of 2T2D asynchronous correlation spectra was always zero induced by incorrectly setting the initial concentrations of P and Q could be avoided when the initial concentrations of P and Q satisfied the requirement of Eq.(6) in the text. On this basis, the 2T2D-asynchronous correlation spectroscopy with auxiliary cross peaks (ASAP-2T2D-asynchronous correlation spectroscopy) was developed by introducing a virtual substance S with an isolated peak and proper concentration into the research system to solve the problem that 2T2D-asynchronous correlation spectra could not reflect the variations of the absorptivity induced by intermolecular interactions. The results of computer simulation experiments demonstrated that the ASAP-2T2D-asynchronous correlation spectra could correctly reflect the variation of the peak position, bandwidth and absorptivity indicating that the ASAP-2T2D-asynchronous correlation spectroscopy was a reliable method for characterizing intermolecular interactions. Finally, the ASAP-2T2D-asynchronous correlation spectroscopy was adopted to characterize the intermolecular interaction between Li+ and benzo-15-crown-5 (BC). The results demonstrated that the variation of the peak position and absorptivity of the characteristic peak of BC could be reflected by the ASAP-2T2D-asynchronous correlation spectrum. These results further confirmed that the ASAP-2T2D-asynchronous correlation spectroscopy could correctly characterize intermolecular interactions.
参考文献

[1] Jia H Y, Huang Z J, Fei Z F, et al. Journal of Materials Chemistry B, 2017, 5: 8193.

[2] Mitsuhashi R, Suzuki T, Hosoya S, et al. Crystal Growth & Design, 2017, 17: 207.

[3] Kolá M H, Hobza P. Chemical Reviews, 2016, 116: 5155.

[4] Chen P Y, Zhang L, Zhu S G, et al. Journal of Molecular Structure, 2017, 1131: 250.

[5] Yim D B, Kim J E, Kim H I, et al. Small, 2018, 14: 1800026.

[6] Kang M, Zhang P C, Cui H G, et al. Macromolecules, 2016, 49: 994.

[7] WANG Yan, L Da, GUO Ming, et al(王 燕, 吕 达, 郭 明, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(2): 494.

[8] Alanazi A M, Abdelhameed A S, Bakheit A H, et al. Journal of Molecular Liquids, 2017, 238: 3.

[9] Yang F L, Yang X, Wu R Z, et al. Physical Chemistry Chemical Physics, 2018, 20: 11386.

[10] HAN Guo-cheng, SU Xiao-rui, HOU Jia-ting, et al(韩国成, 苏晓瑞, 侯嘉婷, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(12): 3958.

[11] Wu Y Q, Zhang L P, Jung Y M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 291.

[12] He A Q, Zeng X Z, Xu Y Z, et al. Journal of Physical Chemistry A, 2017, 121: 7524.

[13] Noda I. Journal of Molecular Structure, 2018, 1160: 471.

[14] Li X P, He A Q, H K, et al. RSC Advances, 2015, 5: 87739.

李晓佩, 张勇杰, 薛丽贞. 双光谱二维异步相关光谱表征分子间相互作用的可行性研究[J]. 光谱学与光谱分析, 2020, 40(4): 1137. LI Xiao-pei, ZHANG Yong-jie, XUE Li-zhen. Application of Two-Trace Two-Dimensional Asynchronous Correlation Spectroscopy in Characterizing Intermolecular Interactions: A Feasibility Study[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1137.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!