激光与光电子学进展, 2019, 56 (17): 170620, 网络出版: 2019-09-05   

具有特征波长的少模光纤特性及传感应用 下载: 1084次

Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength
作者单位
1 厦门大学电子科学与技术学院光波技术研究所, 福建 厦门 361005
2 山东大学海洋研究院, 山东 青岛 266237
引用该论文

陆晨旭, 董小鹏, 苏娟, 雷雪琴. 具有特征波长的少模光纤特性及传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170620.

Chenxu Lu, Xiaopeng Dong, Juan Su, Xueqin Lei. Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170620.

参考文献

[1] 廖延彪, 黎敏, 张敏. 光纤传感技术与应用[M]. 北京: 清华大学出版社, 2009.

    Liao YB, LiM, ZhangM. Optical fiber sensing techniques and applications[M]. Beijing: Tsinghua University Press, 2009.

[2] Lee B H, Kim Y H, Park K S, et al. Interferometric fiber optic sensors[J]. Sensors, 2012, 12(3): 2467-2486.

[3] Wei C F, Lin G B, Dong X P, et al. A tunable polarization-independent comb filter based on high-order mode fiber[J]. Journal of Optics, 2013, 15(5): 055403.

[4] Su J, Dong X P, Lu C X. Characteristics of few mode fiber under bending[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 139-145.

[5] Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1387-1390.

[6] Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182-187.

[7] Lu C X, Su J, Dong X P, et al. Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor[J]. IEEE Sensors Journal, 2019, 19(5): 1794-1801.

[8] Lu C X, Dong X P, Su J. Detection of refractive index change from the critical wavelength of an etched few mode fiber[J]. Journal of Lightwave Technology, 2017, 35(13): 2593-2597.

[9] Lu C X, Su J, Dong X P, et al. Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor[J]. Journal of Lightwave Technology, 2018, 36(13): 2796-2802.

[10] Lei X Q, Dong X P, Lu C X. Sensitive humidity sensor based on a special dual-mode fiber[J]. IEEE Sensors Journal, 2019, 19(7): 2587-2591.

[11] 刘强, 毕卫红, 王思文, 等. 基于LP01和LP11模式干涉的少模光纤温度传感器[J]. 光学学报, 2018, 38(2): 0206001.

    Liu Q, Bi W H, Wang S W, et al. Few-mode fiber temperature sensor based on interference between LP01 and LP11 modes[J]. Acta Optica Sinica, 2018, 38(2): 0206001.

[12] Tripathi S M, Kumar A, Varshney R K, et al. Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures[J]. Journal of Lightwave Technology, 2009, 27(13): 2348-2356.

[13] Tripathi S M, Kumar A, Marin E, et al. Critical wavelength in the transmission spectrum of SMS fiber structure employing GeO2-doped multimode fiber[J]. IEEE Photonics Technology Letters, 2010, 22(11): 799-801.

[14] Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEE Photonics Technology Letters, 2012, 24(7): 593-595.

[15] Ma L, Qi Y H, Kang Z X, et al. All-fiber strain and curvature sensor based on no-core fiber[J]. IEEE Sensors Journal, 2014, 14(5): 1514-1517.

[16] 邵敏, 韩亮, 兆雪, 等. 基于在线型光纤迈克耳孙干涉仪的液位传感器[J]. 光学学报, 2018, 38(3): 0328021.

    Shao M, Han L, Zhao X, et al. Liquid level sensor based on in-fiber Michelson interferometer[J]. Acta Optica Sinica, 2018, 38(3): 0328021.

[17] Zhang N M Y, Li K W, Zhang N, et al. . Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point[J]. Optics Express, 2018, 26(22): 29148-29158.

[18] 付广伟, 李颀峰, 李昀璞, 等. 温度不敏感的错位熔接-粗锥型光子晶体光纤曲率传感器[J]. 光学学报, 2016, 36(11): 1106007.

    Fu G W, Li Q F, Li Y P, et al. Temperature insensitive curvature sensor of photonic crystal fiber based on core-offset splicing and waist-enlarged fiber taper[J]. Acta Optica Sinica, 2016, 36(11): 1106007.

[19] Choi H Y, Kim M J, Lee B H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber[J]. Optics Express, 2007, 15(9): 5711-5720.

[20] Martincek I, Pudis D, Kacik D, et al. Investigation of intermodal interference of LP01 and LP11 modes in the liquid-core optical fiber for temperature measurements[J]. Optik, 2011, 122(8): 707-710.

[21] Lacroix S, Gonthier F, Black R J, et al. Tapered-fiber interferometric wavelength response: the achromatic fringe[J]. Optics Letters, 1988, 13(5): 395-397.

[22] Vengsarkar AM, Walker K L. Article comprising a dispersion-compensating optical waveguide: US5448674[P].1995-09-05[2019-04-15]. https://patents.google.com/patent/US5448674A/en.

[23] Kumar A, Jindal R, Varshney R K, et al. A fiber-optic temperature sensor based on LP01-LP02 mode interference[J]. Optical Fiber Technology, 2000, 6(1): 83-90.

[24] Brugger K. Effect of thermal stress on refractive index in clad fibers[J]. Applied Optics, 1971, 10(2): 437-438.

[25] Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3): 358-362.

[26] Xu M G, Reekie L, Dakin J P, et al. Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors[J]. Electronics Letters, 1994, 30(13): 1085-1087.

[27] Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 899-909.

[28] 张英会, 刘辉航, 王德成. 弹簧手册[M]. 北京: 机械工业出版社, 1997: 176- 177.

    Zhang YH, Liu HH, Wang DC. Spring manual[M]. Beijing: China Machine Press, 1997: 176- 177.

陆晨旭, 董小鹏, 苏娟, 雷雪琴. 具有特征波长的少模光纤特性及传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170620. Chenxu Lu, Xiaopeng Dong, Juan Su, Xueqin Lei. Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170620.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!