激光与光电子学进展, 2019, 56 (17): 170620, 网络出版: 2019-09-05   

具有特征波长的少模光纤特性及传感应用 下载: 1085次

Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength
作者单位
1 厦门大学电子科学与技术学院光波技术研究所, 福建 厦门 361005
2 山东大学海洋研究院, 山东 青岛 266237
图 & 表

图 1. 少模光纤横截面结构图。(a)几何示意图和归一化折射率差分布图;(b)扫描电镜图

Fig. 1. Diagram of the FMF cross-section structure. (a) Geometrical structure and relative refractive index difference profile; (b) scanning electron microscope micrograph

下载图片 查看原文

图 2. SFS结构图

Fig. 2. Structure of the SFS

下载图片 查看原文

图 3. 少模光纤中传输的LP01模式和LP02模式的传播常数差Δβ和SFS结构(LFMF=50 cm)传输光谱在25 ℃自由状态下随波长变化的仿真曲线

Fig. 3. Simulation curves of the propagation constant difference Δβ of LP01 and the LP02 modes propagating in the FMF, and the transmission spectrum of the SFS structure (LFMF=50 cm) under the temperature of 25 ℃ versus wavelength

下载图片 查看原文

图 4. 温度变化时,少模光纤中传输的LP01模式和LP02模式的传播常数差Δβ及SFS结构(LFMF=16 cm)的传输光谱随波长变化的仿真曲线。(a)不考虑热应力下的Δβ;(b)考虑热应力下的Δβ;(c)不考虑热应力下的传输光谱;(d)考虑热应力下的传输光谱

Fig. 4. Simulation curves of the propagation constant difference Δβ of the LP01 and LP02 modes propagating in the FMF, and the transmission spectra of the SFS structure (LFMF=16 cm) versus wavelength when temperature changes. (a) Δβ without thermal stress; (b) Δβ with thermal stress; (c) transmission spectra without thermal stress;(d) transmission spectra with thermal stress

下载图片 查看原文

图 5. 温度变化时SFS结构(LFMF=16 cm)的实验传输光谱及特征波长的移动。(a) SFS结构的实验传输光谱;(b)特征波长随温度的移动

Fig. 5. Experimental transmission spectra of the SFS structure (LFMF=16 cm) and critical wavelength shifts when temperature changes. (a) Experimental transmission spectra of the SFS structure; (b) critical wavelength shift versus temperature

下载图片 查看原文

图 6. SFS结构(LFMF=50 cm)的传输光谱随温度的变化

Fig. 6. Transmission spectra of the SFS structure (LFMF=50 cm) versus temperature

下载图片 查看原文

图 7. SFS结构传输光谱中干涉条纹的温度灵敏度的仿真和实验曲线

Fig. 7. Simulated and experimental results of temperature sensitivity of the interference fringes in the transmission spectrum of the SFS structure

下载图片 查看原文

图 8. 少模光纤中LP01模式和LP02模式之间传播常数差Δβ随轴向应变变化的仿真曲线

Fig. 8. Simulation curves of propagation constant difference Δβ of the LP01 and LP02 modes propagating in the FMF under axial strain variation

下载图片 查看原文

图 9. 实验测量。(a) SFS结构(LFMF=30 cm)传输光谱随轴向应变变化;(b)特征波长随轴向应变的变化

Fig. 9. Results of experimental measurements. (a) Transmission spectra of the SFS structure (LFMF=30 cm) under axial strain variation; (b) critical wavelength shift of CWL versus axial strain

下载图片 查看原文

图 10. SFS传感结构的传输光谱的干涉峰的轴向应变灵敏度随归一化波长的变化

Fig. 10. Relationship between axial strain sensitivity of the interference fringes in the transmission spectrum of the SFS structure and normalized wavelength

下载图片 查看原文

图 11. SFS结构(LFMF=20 cm)传感器随温度和轴向应变变化时的实时输出图。(a) 30 min实验测试传输光谱中干涉峰PH, 1和PL, 1的峰值波长移动;(b)实际施加轴向应力和SFS结构传感器实测输出轴向应力曲线;(c)实际环境温度和SFS结构传感器实测输出温度曲线

Fig. 11. Output of sensor containing the SFS structure (LFMF=20 cm) varies with temperature and axial strain. (a) Wavelength shifts for PH, 1 and PL, 1 over a 30-min period of the experiment; (b) curves of the applied and calculated axial strains over that time; (c) curves of the applied and calculated temperatures

下载图片 查看原文

图 12. 涂覆聚酰亚胺的SFS结构(LFMF=15 cm)在相对湿度变化下的传感特性。(a)传输光谱;(b)干涉谷DL, 1,DL, 2,DL, 3,DL, 4的波长移动

Fig. 12. Sensor outputs of the polyimide-coated SFS structure (LFMF=15 cm) under relative humidity variation. (a) Transmission spectra; (b) wavelength shifts of interference dips DL, 1, DL, 2, DL, 3, and DL, 4

下载图片 查看原文

图 13. 少模光纤在不同等效曲率下,仿真LP01模式和LP02模式的Δβ及SFS结构(LFMF=35 cm)的传输光谱随波长的变化

Fig. 13. Simulation of the propagation constant difference Δβ of LP01 and LP02 modes, and the transmission spectra of the SFS structure (LFMF=35 cm) versus wavelength with different equivalent curvatures of the FMF

下载图片 查看原文

图 14. 少模光纤在不同曲率下,实验测得SFS结构(LFMF=35 cm)的传输光谱随波长的变化

Fig. 14. Experimental results of the transmission spectra of the SFS structure (LFMF=35 cm) versus wavelength with different curvatures of the FMF

下载图片 查看原文

图 15. 少模光纤的特征波长随等效曲率变化的仿真和实验结果

Fig. 15. Simulation and experimental results of the critical wavelength shift versus equivalent curvature of the FMF

下载图片 查看原文

图 16. 基于SFS结构 (LFMF=10 cm)的大量程位移传感器。(a)实验示意图;(b)实验实物图;(c)螺线管数学模型

Fig. 16. Displacement sensor with large measurement range based on the SFS structure (LFMF=10 cm). (a) Experimental diagram; (b) experimental setup; (c) geometrical mathematical model of circular helix

下载图片 查看原文

图 17. 基于SFS结构(LFMF=10 cm)的大位移传感器。(a)传输光谱随位移量的变化;(b)少模光纤等效曲率和特征波长随位移量的变化曲线

Fig. 17. Large displacement sensor based on the SFS structure (LFMF=10 cm). (a) Transmission spectra under different displacements; (b) change of the FMF equivalent curvature and shifts of the critical wavelengths under displacement variation

下载图片 查看原文

图 18. 腐蚀SFS传输光谱中特征波长随光纤外径dFMF变化的仿真曲线。其中插图为LP01模式和LP02模式的传播常数差在不同dFMF下随波长变化的仿真曲线

Fig. 18. Simulation of the critical wavelength shifts in the transmission spectra of the etched SFS structure with different dFMF. The inset is the simulation of the propagation constant difference of the LP01 and LP02 modes versus wavelength with different dFMF

下载图片 查看原文

图 19. 腐蚀SFS结构(LFMF=20 cm, dFMF=21.3 μm)在不同SRI下的传输光谱。(a) SRI为1.316;(b) SRI为1.383;(c) SRI为1.423;(d) SRI为1.439

Fig. 19. Transmission spectra of the etched SFS structure (LFMF=20 cm, dFMF=21.3 μm) under different SRIs. (a) SRI is 1.316;(b) SRI is 1.383;(c) SRI is 1.423;(d) SRI is 1.439

下载图片 查看原文

图 20. 外界折射率变化下腐蚀SFS传输光谱中特征波长移动情况(实验结果标注误差线)

Fig. 20. Experimental results (marked with error bars) of the critical wavelength shift in the transmission spectrum of the etched SFS structure under surrouding refractive index variation

下载图片 查看原文

图 21. 在外界折射率变化下,腐蚀SFS结构(dFMF=21.3 μm,LFMF=20 cm)的传输光谱及特征波长和部分干涉峰/干涉谷波长的仿真变化。(a)特征波长及左右两边干涉峰/谷(DL, 1, PL, 1, PH, 1, DH, 1)的波长移动情况;(b) SRI为1.350,1.355,1.360时的传输光谱

Fig. 21. Simulation of the transmission spectra of the etched SFS structure (dFMF=21.3 μm, LFMF=20 cm) and shifts of the critical wavelength and the interference peaks/dips under surrounding refractive index variation. (a) Shifts of the critical wavelength and the interference peaks/dips (DL,1, PL,1, PH,1, DH,1) on each side of the critical wavelength; (b) transmission spectra under the SRIs of 1.350, 1.355, and 1.360

下载图片 查看原文

表 1具有特征波长的SFS传感结构在多种参量测量中的应用总结

Table1. Summary of the SFS sensing structure with critical wavelength and its applications in different sensing parameters

MeasurementparameterMeasurement indexExperimental sensitivitySensing applications
TemperatureCriticalwavelength0.0401 nm·℃-1Temperature measurementin a large measurementrange (up to a maximum of 800 ℃)
TemperatureInterferencepeak /dipSensitivity of the interferencepeak is governed by the wavelengthspacing between the peakwavelength and the critical wavelength;the sensitivities of the interferencepeaks increase significantly with thedecreasing of wavelengthspacing; the maximum temperaturesensitivity of the interference peaksfor an SFS structure employinga 30-cm FMF is 0.482 nm·℃-1Temperature measurementwith a high sensitivity, simultaneousmeasurement of temperatureand other environmentalvariables such as strain
StrainCritical wavelength-0.001 nm·με-1Strain measurement ina large measurement range
StrainInterferencepeak/dipSimilar as the temperaturesensitivity, the strain sensitivity of theinterference peak is governedby the wavelength spacing betweenthe peak wavelength and the criticalwavelength, and increases significantlywith the decreasing of wavelengthspacing; the maximum strain sensitivityof the interference peaks for anSFS structure employing a 30-cmFMF is -0.027 nm·℃-1Strain measurement withhigh sensitivity; simultaneousmeasurement of strain and temperature
Relative humidityInterference dip-0.360 nm for perrelative humidity changeRelative humidity measurementwith a high sensitivity
CurvatureCritical wavelength0.398 nm/m-1Curvaturemeasurement ina large measurement range; largedisplacement measurementwith different measurement ranges
Surroundingrefractive indexCriticalwavelengthMaximum reflectiveindex sensitivity is2489.796 nm·RIU-1Liquid reflective index measurementwith a large measurementrange up to 1.454 under 532 nm

查看原文

陆晨旭, 董小鹏, 苏娟, 雷雪琴. 具有特征波长的少模光纤特性及传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170620. Chenxu Lu, Xiaopeng Dong, Juan Su, Xueqin Lei. Characteristics and Sensing Applications of Few-Mode Fiber with Critical Wavelength[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170620.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!