红外, 2019, 40 (4): 1, 网络出版: 2019-07-23   

制冷焦平面探测器组件冷平台材料研究进展

Research Progress on Cold Platform Materials for Cooled Focal Plane Detector Assembly
余利泉 1,2莫德锋 1,3王镇 1,3龚海梅 1,2,3,*
作者单位
1 中国科学院上海技术物理研究所传感技术国家重点实验室,上海 200083
2 上海科技大学信息科学与技术学院,上海 201210
3 中国科学院大学,北京 100049
摘要
红外焦平面探测器在航空、航天、**等多个领域具有广泛应用。我国亟需发展大面阵、轻量化和高可靠性的红外焦平面探测器及其杜瓦组件。介绍了国内外红外探测器组件的冷平台材料选用情况,包括Fe-Ni膨胀合金、低膨胀高导热合金和新型陶瓷等。总结了红外焦平面探测器热失配应力的来源以及减小热失配应力的解决方案。最后给出了红外探测器研制过程中的冷平台材料选取建议以及在红外焦平面探测器组件发展趋势下需要重点研究的相关技术。
Abstract
Infrared focal plane detectors are widely used in aviation, aerospace, military and other fields. It is urgent to develop large format, lightweight and high reliability infrared focal plane detectors and their dewar assembly in China. The selection of cold platform materials for infrared detector assemblies at home and abroad is analyzed, including Fe-Ni expansion alloy, low expansion alloys with high thermal conductivity, new ceramic materials, and so on. The source of thermal mismatch stress in infrared focal plane detectors and the solution to reduce thermal mismatch stress are summarized. Finally, some suggestions on the material selection of cold platform during the development of infrared detector are given, while involving the key technologies which should be studied under the development trend of infrared focal plane detectors assembly.
参考文献

[1] 史衍丽. 第三代红外探测器的发展与选择[J]. 红外技术, 2013, 35(1): 1-8.

[2] 李意, 雷志勇, 李青松. 红外探测技术的应用与发展[J]. 国外电子测量技术, 2018, 37(2): 80-83.

[3] 龚海梅, 邵秀梅, 李向阳, 等. 航天先进红外探测器组件技术及应用[J]. 红外与激光工程, 2012, 41(12): 3129-3140.

[4] Rogalski A. Next Decade in Infrared Detectors[C]. SPIE, 2017, 10433: 104330L.

[5] 陈星. 碲镉汞红外焦平面探测器可靠性相关技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2014.

[6] 膨胀合金手册编写组. 膨胀合金手册[M]. 北京: 冶金工业出版社, 1979.

[7] 文佳佳, 张添, 陆燕. 可伐合金材料低温热物性及弹性模量测试[J]. 低温工程, 2016, 38(6): 43-47.

[8] 王光宗, 郭宏, 尹法章,等. 钼铜的低温导热研究[J]. 热加工工艺, 2012, 41(16): 13-15.

[9] Blank R, Anglin S, Beletic J W, et al. The HxRG Family of High Performance Image Sensors for Astronomy[C]. Maui: 6th ASP Conference on Solar Polarization, 2011.

[10] 李俊, 王小坤, 张磊, 等. 超长线列红外探测器杜瓦真空寿命评估方法[J]. 激光与红外, 2018, 48(7): 854-859.

[11] 李言谨, 杨建荣, 何力, 等. 长波红外元线列碲镉汞焦平面器件[J]. 红外与毫米波学报, 2009, 28(2): 90-92.

[12] Wang S Y, Geary J C, Amato S M, et al. High Speed Wide Field CMOS Camera for Transneptunian Automatic Occultation Survey[C]. SPIE, 2014, 9147: 914772.

[13] Jiang Z, Wu Y. A Miniature Ppulse Tube Cryocooler Used in a Superspectral Imager[C]. SPIE, 2017, 10180: 1018003.

[14] Blank R, Anglin S, Beletic J W, et al. H2RG Focal Plane Array and Camera Performance Update[C]. SPIE, 2012, 8453: 845310.

[15] Kubik D, Alvarez R, Annis J, et al. Automated Characterization of CCD Detectors for DECam[C]. SPIE, 2010, 7735: 77355C.

[16] Liu D, Xu Q, Mo D, et al. Structural Analysis of an Infrared Focal Plane Dewar Assembly for Meteorological Satellite[C]. SPIE, 2018, 10626: 106260F.

[17] Xiangli B, Kim D W, Xue S, et al. Telescope and Space Optical Instrumentation-Design and Verification of Focal Plane Assembly Thermal Control System of One Space-based Astronomy Telescope[C]. SPIE, 2015, 9678: 96780Q.

[18] Bai Y, Farris M, Fischer L, et al. Manufacturability and Performance of 2.3 m HgCdTe H2RG Sensor Chip Assemblies for Euclid[C]. SPIE, 2018, 10709: 1070915.

[19] 东海杰, 张磊, 白绍竣, 等. 长线列红外探测器组件冷台面结构设计[J]. 激光与红外, 2018, 48(8): 1020-1022.

[20] Bai Y, Tennant W, Anglin S, et al. 4 K×4 K Format 10 m Pixel Pitch H4RG-10 Hybrid CMOS Silicon Visible Focal Plane Array for Space Astronomy[C]. SPIE, 2012, 8453: 84530M.

[21] Blank R, Beletic J W, Cooper D, et al. Development and Production of the H4RG-15 Focal Plane Array[C]. SPIE, 2012, 8453: 84530V.

[22] Ballester O, Cardielsas L, Castilla J, et al. The Dark Energy Camera Readout System[C]. SPIE, 2012, 8453: 84532Q.

[23] Besuner R W, Bebek C J, Hart P A, et al. A 260 Megapixel Visible/NIR Mixed Technology Focal Plane for Space[C]. SPIE, 2011, 8155: 81550D.

[24] Obuchi Y, Komiyama Y, Kamata Y, et al. Hyper Suprime-Cam: Implementation and Performance of the Cryogenic Dewar[C]. SPIE, 2012, 8446: 84666Q.

[25] Devilliers C, Kroedel M R. CESIC: A New Technology for Lightweight and Cost Effective Space Instrument Structures and Mirrors[C]. SPIE, 2006, 5494: 285-296.

[26] Lee H B. Trade Study of All-SiC Lightweight Primary Mirror and Metering Structures for Spaceborne Telescopes[C]. SPIE, 2015, 9574: 95740D.

[27] 王玉龙, 张磊, 赵秀峰, 等. 红外探测器封装陶瓷衬底材料特性及其应用研究[J]. 激光与红外, 2018, 48(5): 61-66.

[28] Baltay C, Emmet W, Rabinowitz D, et al. Space-qualified, Abuttable Packaging for LBNL p-Channel CCDs, Part I[C]. SPIE, 2010, 7742: 77422E.

[29] Hsueh C H. Modeling of Elastic Deformation of Multilayers Due to Residual Stress and External Bending[J]. Journal of Applied Physics, 2002, 91(12): 9652-9656.

[30] 孙闻. 制冷型红外探测器组件低温热特性研究[D]. 上海: 中国科学院上海技术物理研究所, 2017.

[31] Ziegler J, Eich D, Hanna S, et al. Recent Results of Two-dimensional LW-and VLW-HgCdTe IR FPAs at AIM[C]. SPIE, 2010, 7660: 766038.

[32] Fieque B, Jamin N, Chorier P, et al. New Sofradir VISIR-SWIR Large Format Detector for Next Generation Space Missions[C]. SPIE, 2012, 8535: 853513.

[33] 范广宇, 龚海梅, 李言谨. 红外焦平面器件温度循环可靠性研究[J]. 红外与激光工程, 2010, 39(4): 607-610.

余利泉, 莫德锋, 王镇, 龚海梅. 制冷焦平面探测器组件冷平台材料研究进展[J]. 红外, 2019, 40(4): 1. YU Li-quan, MO De-feng, WANG Zhen, GONG Hai-mei. Research Progress on Cold Platform Materials for Cooled Focal Plane Detector Assembly[J]. INFRARED, 2019, 40(4): 1.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!