人工晶体学报, 2021, 50 (2): 381, 网络出版: 2021-03-30   

GaAs基980 nm高功率半导体激光器的研究进展

Research Progress of GaAs Based 980 nm High Power Semiconductor Lasers
作者单位
1 太原理工大学,新材料界面科学与工程教育部重点实验室,太原 030024
2 太原理工大学轻纺工程学院,太原 030024
3 太原理工大学材料科学与工程学院,太原 030024
4 陕西科技大学,材料原子分子科学研究所,西安 710021
引用该论文

胡雪莹, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基980 nm高功率半导体激光器的研究进展[J]. 人工晶体学报, 2021, 50(2): 381.

HU Xueying, DONG Hailiang, JIA Zhigang, ZHANG Aiqin, LIANG Jian, XU Bingshe. Research Progress of GaAs Based 980 nm High Power Semiconductor Lasers[J]. Journal of Synthetic Crystals, 2021, 50(2): 381.

参考文献

[1] 甘啟俊,姜本学,张攀德,等.高平均功率固体激光器研究进展[J].激光与光电子学进展,2017,54(1):010003.

[2] 李志明,辛建国.射频激励金属板条波导CO2激光器的功率输出特性[J].红外与激光工程,2008,37(2):230-232.

[3] 杨卫红,张 雪,李建东.2 kW射频板条CO2激光器电极表面膜特性研究[J].应用激光,2019,39(1):136-142.

[4] 马骁宇,张娜玲,仲 莉,等.高功率半导体激光泵浦源研究进展[J].强激光与粒子束,2020,32(12):120-129.

[5] 张 建.GaAs基近红外半导体激光器的设计、生长和制备研究[D].长春:中国科学院长春光学精密机械与物理研究所,2013:7-8.

[6] WELCH D F, PLANO W, MAJOR J, et al. High-power, 980-nm, single-mode laser diodes[C]//Optical Fiber Communication. San Diego, California. Washington, D.C.: OSA, 1991.

[7] SUMIDA D S, FAN T Y. A 50 mJ per pulse transversely diode-pumped Yb∶YAG laser at room temperature[C]//Proceedings of LEOS'94. October 31 - November 3, 1994, Boston, MA, USA. IEEE, 1994: 419-420.

[8] CHILLA J L A, BUTTERWORTH S D, ZEITSCHEL A, et al. High-power optically pumped semiconductor lasers[C]//Proc SPIE 5332, Solid State Lasers XIII: Technology and Devices, 2004, 5332: 143-150.

[9] 袁庆贺,井红旗,张秋月,等.砷化镓基近红外大功率半导体激光器的发展及应用[J].激光与光电子学进展,2019,56(4):040003.

[10] XU B S, QU K, WANG Z Y, et al. Investigation of photoelectric performance of laser diode by regulation of p-waveguide layer thickness[J]. Optik, 2020, 200: 163458.

[11] 宁永强,陈泳屹,张 俊,等.大功率半导体激光器发展及相关技术概述[J/OL].光学学报:1-18[2020-12-19].http://kns.cnki.net/kcms/detail/31.1252.O4.20200904.1720.012.html.

[12] KE K L, CHUA S J, FAN W J. Low threshold current density and high-quantum-efficiency 980-nm cw QW laser[C]//Proc SPIE 4227, Advanced Microelectronic Processing Techniques, 2000, 4227: 163-168.

[13] GAO X, BO B X, WANG L, et al. 980-nm high-power strained quantum well laser array fabricated by MBE[C]//Proc SPIE 5624, Semiconductor and Organic Optoelectronic Materials and Devices, 2005, 5624: 636-641.

[14] 袁庆贺,井红旗,仲 莉,等.高功率高可靠性9XX nm激光二极管[J].中国激光,2020,47(4):0401006.

[15] 汤 瑜,曹春芳,赵旭熠,等.InGaAs/GaAs/InGaP量子阱激光器的激光单模特性研究[J].激光与光电子学进展,2019,56(13):131402.

[16] 王 颖.Ⅲ-Ⅴ族半导体量子点和量子阱复合结构纳米材料光学特性研究[D].北京:北京交通大学,2019.

[17] KORNYSHOV G O, PAYUSOV A S, GORDEEV N Y, et al. High-power 0.98 μm range diode lasers based on InGaAs/GaAs quantum well-dot active region[J]. Journal of Physics: Conference Series, 2019, 1400: 066045.

[18] SU W Y S, SANTIAGO S R M S, CHIANG HSIEH C C, et al. Enhanced photoluminescence of InGaAs/AlGaAs quantum well with tungsten disulfide quantum dots[J]. Nanotechnology, 2020, 31(22): 225703.

[19] 张继宇.9XX nm器件电流非注入、透明无吸收窗口的设计与制作[D].长春:长春理工大学,2019.

[20] XU Z T, YANG G W, YIN T, et al. High-power 980-nm InGaAs/GaAs/AlGaAs window structure lasers fabricated by impurity-free vacancy diffusion[C]//Proc SPIE 3547, Semiconductor Lasers III, 1998, 3547: 54-60.

[21] ZHOU L, GAO X, XU L Y, et al. InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering[J]. Solid-State Electronics, 2013, 89: 81-84.

[22] LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216.

[23] SAGAWA M, HIRAMOTO K, TOYONAKA T, et al. High power COD-free operation of 0.98 μm InGaAs/GaAs/InGaP lasers with noninjection regions near the facets[J]. Electronics Letters, 1994, 30(17): 1410-1411.

[24] 刘 斌,张敬明,马骁宇,等.980 nm脊型波导激光器腔面非注入区的研究[J].激光与红外,2003,33(2):109-111.

[25] 张 松,刘素娟,崔碧峰,等.新型大功率LD非注入区窗口结构研究[J].半导体光电,2014,35(1):26-29.

[26] ARSLAN S, GNDOAGˇDU S, DEMIR A, et al. Facet cooling in high-power InGaAs/AlGaAs lasers[J]. IEEE Photonics Technology Letters, 2019, 31(1): 94-97.

[27] LINDSTROM C, TIHANYI P. Cleaning of GaAs surfaces with low-damage effects using ion-beam milling[J]. IEEE Transactions on Electron Devices, 1983, 30(6): 711-713.

[28] 程东明,刘 云,王立军.表面钝化技术对光学灾变的影响的研究[J].激光技术,2003,27(1):14-15.

[29] 王 鑫,朱凌妮,赵懿昊,等.915 nm半导体激光器新型腔面钝化工艺[J].红外与激光工程,2019,48(1):0105002.

[30] 舒雄文,徐 晨,徐遵图,等.808 nm大功率半导体激光器腔面光学膜工艺[J].半导体学报,2005,26(3):571-575.

[31] 刘 磊.980 nm半导体激光器腔面膜研究[D].长春:长春理工大学,2013.

[32] 许留洋.高功率半导体激光器腔面钝化及器件特性研究[D].长春:长春理工大学,2016.

[33] 崔碧峰,程 瑾,郝 帅,等.不同应力增透膜对半导体激光器性能的影响[J].半导体光电,2020,41(1):77-79+84.

[34] 闫宏宇.高功率半导体激光器的光束特性评价[D].长春:长春理工大学,2019.

[35] TSANG W T, OLSSON N A. New large optical cavity laser with distributed active layers[J]. Applied Physics Letters, 1983, 42(10): 850-852.

[36] 胡理科,祁 琼,熊 聪,等.大功率小垂直发散角980 nm量子阱激光器[J].半导体光电,2010,31(5):677-681+686.

[37] 李建军,崔碧峰,邓 军,等.非对称超大光腔980 nm大功率半导体激光器[J].中国激光,2013,40(11):1102011.

[38] SERIN A, GORDEEV N, PAYUSOV A, et al. Edge-emitting lasers based on coupled large optical cavity with high beam stability[J]. Journal of Physics: Conference Series, 2017, 929: 012077.

[39] ZHAO S, QI A, WANG M, et al. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity[J]. Optics Express, 2018, 26(3): 3518-3526.

[40] MAXIMOV M V, SHERNYAKOV Y M, NOVIKOV I I, et al. Narrow vertical beam divergence laser diode based on longitudinal photonic band crystal waveguide[J]. Electronics Letters, 2003, 39(24): 1729-1731.

[41] NOVIKOV I I, GORDEEV N Y, SHERNYAKOV Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence[J]. Applied Physics Letters, 2008, 92(10): 103515.

[42] 汪丽杰.布拉格反射波导光子晶体激光器的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2013.

[43] YOSHIDA M, DE ZOYSA M, ISHIZAKI K, et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 2019, 18(2): 121-128.

[44] GU L, YUAN H B, LI L, et al. Structure design of InGaAs quantum well laser with mode expansion layer[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563: 032011.

[45] YEN S T, LEE C P. Theoretical investigation on semiconductor lasers with passive waveguides[J]. IEEE Journal of Quantum Electronics, 1996, 32(1): 4-13.

[46] 王晓燕,赵 润,沈 牧.小发散角高功率半导体激光器研究[J].红外与激光工程,2006,35(3):302-304+335.

[47] 曾丽娜,李 林,李再金,等.基于模式扩展层结构的980 nm小发散角半导体激光器模拟研究[J].现代物理,2018,8(6):265-270.

[48] JEON H, VERDIELL J M, ZIARI M, et al. High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1550-nm applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(6): 1344-1350.

[49] WENZEL H, KLEHR A, BRAUN M, et al. High-power 980-nm DFB diode lasers with a small vertical farfield divergence[C]//CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005. June 12-17, 2005, Munich, Germany. IEEE, 2005: 110.

[50] CRUMP P, SCHULTZ C M, WENZEL H, et al. Reliable operation of 976 nm high power DFB broad area diode lasers with over 60% power conversion efficiency[C]//SPIE OPTO. Proc SPIE 7953, Novel in-Plane Semiconductor Lasers X, San Francisco, California, USA. 2011, 7953: 79531G.

[51] DECKER J, FRICKE J, MAADORF A, et al. Non-uniform DFB-surface-etched gratings for enhanced performance high power, high brightness broad area lasers[C]//SPIE LASE. Proc SPIE 10086, High-Power Diode Laser Technology XV, San Francisco, California, USA. 2017, 1008: 100860R.

[52] 邱 橙,陈泳屹,高 峰,等.一种结合增益耦合分布反馈光栅的多模干涉波导半导体激光器的研制[J].物理学报,2019,68(16):218-227.

[53] O'BRIEN S, PARKE R, WELCH D F, et al. High power singlemode GaInAs lasers with distributed Bragg reflectors[J]. Electronics Letters, 1992, 28(13): 1272.

[54] FIEBIG C, BLUME G, UEBERNICKEL M, et al. High-power DBR-tapered laser at 980 nm for single-path second harmonic generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 978-983.

[55] REDDY U. Wide stripe single and dual wavelength mode semiconductor diode lasers[D].Illinois: University of Illinois at Urbana-Champaign, 2011.

[56] PAOLETTI R, CODATO S, CORIASSO C, et al. High power wavelength stabilized multiemitter semiconductor laser module using highly manufacturable DBR diode lasers[C]//SPIE LASE. Proc SPIE 11262, High-Power Diode Laser Technology XVIII, San Francisco, California, USA. 2020, 1126: 112620K.

[57] GEELS R S, COLDREN L A. Submilliamp threshold vertical-cavity laser diodes[J]. Applied Physics Letters, 1990, 57(16): 1605-1607.

[58] MILLER M, GRABHERR M, JAGER R, et al. High-power VCSEL arrays for emission in the watt regime at room temperature[J]. IEEE Photonics Technology Letters, 2001, 13(3): 173-175.

[59] SEURIN J F, GHOSH C L, KHALFIN V, et al. High-power vertical-cavity surface-emitting arrays[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6876, High-Power Diode Laser Technology and Applications VI, San Jose, California, USA. 2008, 6876: 68760D.

[60] WARREN M E, PODVA D, DACHA P, et al. Low-divergence high-power VCSEL arrays for lidar application[C]//SPIE OPTO. Proc SPIE 10552, Vertical-Cavity Surface-Emitting Lasers XXII, San Francisco, California, USA. 2018, 1055: 105520E.

[61] CZYSZANOWSKI T, GEBSKI M, DEMS M, et al. Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system[J]. Scientific Reports, 2017, 7: 40348.

[62] 张继业,张建伟,曾玉刚,等.高功率垂直外腔面发射半导体激光器增益设计及制备[J].物理学报,2020,69(5): 20191787.

[63] 张天杰.976 nm大功率VCSEL的结构计算与氧化工艺研究[D].西安:西安理工大学,2018.

[64] DENG Z, SHEN J, GONG W C, et al. Temperature distribution and thermal resistance analysis of high-power laser diode arrays[J]. International Journal of Heat and Mass Transfer, 2019, 134: 41-50.

[65] YIN S, TSENG K J, ZHAO J Y. Design of AlN-based micro-channel heat sink in direct bond copper for power electronics packaging[J]. Applied Thermal Engineering, 2013, 52(1): 120-129.

[66] 房俊宇,石琳琳,张 贺,等.石墨片作辅助热沉的高功率半导体激光器热传导特性[J].发光学报,2019,40(7):907-914.

[67] WEISS S, ZAKEL E, REICHL H. Mounting of high power laser diodes on diamond heatsinks[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1996, 19(1): 46-53.

[68] 潘存海,李俊岳,花吉珍,等.用于半导体激光器热沉的金刚石膜/Ti/Ni/Au金属化体系的研究[J].半导体学报,2003,24(7):737-742.

[69] PARASHCHUK V V. On efficiency of power diode lasers using diamond heat sinks[J]. Materials Today: Proceedings, 2016, 3: S165-S170.

[70] 王鲁华.铜/金刚石复合材料的界面结构与导热性能[D].北京:北京科技大学,2019.

[71] 刘 云.半导体微腔激光器散热分析及其工艺制备[D].长春:长春理工大学,2019:9-11.

[72] 张彦鑫,王警卫,吴 迪,等.一种新型大功率单发射腔半导体激光器及其特性[J].中国激光,2010,37(5):1186-1191.

[73] BEZOTOSNYI V V, KROKHIN O N, OLESHCHENKO V A, et al. 980 nm, 15 W CW laser diodes on F-mount-type heat sinks[J]. Quantum Electronics, 2015, 45(12): 1088-1090.

[74] WU D H, ZAH C E, LIU X S. Thermal design for the package of high-power single-emitter laser diodes[J]. Optics & Laser Technology, 2020, 129: 106266.

[75] MUNDINGER D, BEACH R, BENETT W, et al. Demonstration of high-performance silicon microchannel heat exchangers for laser diode array cooling[J]. Applied Physics Letters, 1988, 53(12): 1030-1032.

[76] 刘 云,廖新胜,秦 丽,等.大功率半导体激光器叠层无氧铜微通道热沉[J].发光学报,2005,26(1):113-118.

[77] 范嗣强.大功率激光二极管阵列节流微蒸发制冷热沉的原理与实验研究[D].重庆:重庆大学,2015.

[78] DENG Z, SHEN J, DAI W, et al. Experimental study on cooling of high-power laser diode arrays using hybrid microchannel and slot jet array heat sink[J]. Applied Thermal Engineering, 2019, 162: 114242.

[79] John V, Feler R. Progress in the development of active heat sink for high-power laser diodes[C].SPIE-International Society of Optical Engineering, 2010, 7583: 75830K.

胡雪莹, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基980 nm高功率半导体激光器的研究进展[J]. 人工晶体学报, 2021, 50(2): 381. HU Xueying, DONG Hailiang, JIA Zhigang, ZHANG Aiqin, LIANG Jian, XU Bingshe. Research Progress of GaAs Based 980 nm High Power Semiconductor Lasers[J]. Journal of Synthetic Crystals, 2021, 50(2): 381.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!