光子学报, 2016, 45 (4): 0423001, 网络出版: 2016-05-11  

基于多圆环谐振腔MIM波导多路分频特性

Demultiplexing Characteristic of MIM Waveguide Based on Multiple-Ring Shaped Resonators
作者单位
桂林理工大学 理学院, 广西 桂林 541004
摘要
在可见光到近红外频段,利用时域有限差分数值模拟计算方法,研究了一种多圆环形金属-介质-金属等离子体波导结构的电磁传输特性.结果表明,由于谐振作用,不同波长电磁波能量被分别束缚于圆环中,之后被耦合到各出口端进行传输,从而实现了电磁波的多路分频传输功能.圆环的共振波长与圆环半径之间存在近似线性关系,且随着圆环内填充介质折射率的增大呈现明显的红移现象;各出口端共振波长对应电磁能量的传输率随着介质波导与圆环间耦合厚度的增大而急剧降低.利用电磁波共振理论阐述了电磁能量的谐振束缚现象,与数值模拟结果吻合.研究结果可应用于未来光子集成器件中.
Abstract
A multiple-ring shaped Metal-Insulator-Metal (MIM) plasmonic waveguide with multi-output ports was proposed. From visible lightto nearinfrared wavelengths, the transmission characteristics of the structure were investigated by finite-difference time-domain method. The structure exhibits typical wavelength demultiplexing function, which is due to that the electromagnetic wave energy of different wavelengths can be trapped in different insulator rings and coupled into the corresponding output ports. The resonance theory is employed to analyze the trapping phenomenon.The resonant wavelength of the ring has near linear relationship with the radius and has red shift with increase the value of the filled refractive index. The transmittance of resonant wavelength in the output ports are heavily influenced by the coupled thickness. The proposed multiple-ring shaped MIM waveguide may be useful for plasmonic designs.
参考文献

[1] BOZHEVOLNYI S I, VOLKOV V S, DEVAUX E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J].Nature, 2006, 440: 508-511.

[2] FANG Y, LI Z, HUANG Y, et al. Branched silver nanowires as controllable plasmon routers[J].Nano Letters, 2010, 10(5): 1950-1954.

[3] NEUTENS P, DORPE P V, VLAMINCK I D, et al. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides[J].Nature Photonics, 2009, 3(5): 283-286.

[4] LIN C I, GAYLORD T K. Loss measurement of plasmonic modes in planar metal-insulator-metal waveguides by an attenuated total reflection method[J].Optics Letters, 2010, 35(22): 3814-3816.

[5] LIU J Q, WANG L L,HE M D, et al.A wide bandgapplasmonic Bragg reflector[J]. Optics Express, 2008, 16(7): 4888-4894.

[6] ZHONG X L. A narrow-band subwavelength plasmonic waveguide filter with metal-insulator-metal braggreflector[J].Acta Photonica Sinica, 2011, 40(4): 537-541.

[7] TIAN M, LU P, CHEN L, et al. All-optical switching in MIM waveguide resonator with an outer portion smooth bend structure containing nonlinear optical materials[J]. Optics Communications, 2012, 285(21-22): 4562-4566.

[8] ZHANG Z Y, WU B J, WEN F,et al. Research on polarization dependent loss of micro ring resonator based optical switches[J]. Acta Photonica Sinica, 2015, 44(7): 0713002.

[9] WANG L, WANG L L, ZENG Y P, et al. Trapping of surface-plasmon polaritons in a subwavelength cut[J]. Optics Communications, 2011, 284(1): 153-155.

[10] WANG G X, LU H, LIU X M. Trapping of surface plasmon waves in graded grating waveguide system[J]. Appllied Physics Letters, 2012, 101(1): 013111-013113.

[11] CHEN Z, CHEN J J, YU L, et al. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator[J]. Plasmonics, 2015, 10(1): 131-137.

[12] LIN X S, HUANG X G. Tooth-shaped plasmonic waveguide filters with nanometericsizes[J]. Optics Letters, 2008, 33(23): 2874-2876.

[13] WANG L, WANG L L, ZENG Y P, et al. A triangular shaped channel MIM waveguide filter[J].Journal of Modern Optics, 2012, 59(19): 1686-1689.

[14] WEN J H, ZHANG Y, YANG Y B,et al. Photonic crystal tunable optical filter based on air defect layer[J]. Acta Photonica Sinica, 2015, 44(8): 0823001.

[15] LEE T W, LEE D E, KWON S H. Dual-function metal-insulator-metal plasmonicoptical filter[J]. IEEE Photonics Journal, 2015, 7(1): 4800108.

[16] PANG S F, QU S X, ZHANG Y Y,et al. Filter characteristic research of MIM waveguide based on L shaped resonator[J]. Acta Optica Sinica, 2015, 35(6): 0623001.

[17] HU FF, YI H X, ZHOU Z P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities[J]. Optics Letters, 2011, 36(8): 1500-1502.

[18] WANG G X, LU H, LIU X M, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonicnanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

[19] LU F, WANG Z H, LI K, et al. A plasmonictriple-wavelength demultiplexingstructure based on a MIM waveguide with side-coupled nanodiskcavities[J]. IEEE Transactions on Nanotechnology, 2013, 12(6): 1185-1190.

[20] LIU H Q, GAO Y X, ZHU B F, et al. A T-shaped high resolution plasmonicdemultiplexer based on perturbations of two nanoresonators[J]. Optics Communication, 2015, 334: 164-169.

[21] PALIK E D. Handbook of optical constants of solids[M]. New York: Academic press, 1998.

[22] ECONOMOU E N. Surface plasmons in thin films[J]. Physics Review, 1969, 182(2): 539-554.

王柳, 曾亚萍. 基于多圆环谐振腔MIM波导多路分频特性[J]. 光子学报, 2016, 45(4): 0423001. WANG Liu, ZENG Ya-ping. Demultiplexing Characteristic of MIM Waveguide Based on Multiple-Ring Shaped Resonators[J]. ACTA PHOTONICA SINICA, 2016, 45(4): 0423001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!