中国激光, 2012, 39 (8): 0803008, 网络出版: 2012-07-09   

激光快速成形Rene 80高温合金组织及裂纹形成机理

Microstructures and Mechanism of Cracks Forming of Rene 80 High-Temperature Alloy Fabricated by Laser Rapid Forming Process
作者单位
燕山大学机械工程学院, 河北 秦皇岛 066004
摘要
研究了激光快速成形(LRF)Rene 80高温合金厚壁件的凝固组织和裂纹的形成机理。结果表明,激光快速成形Rene 80高温合金的凝固组织为与沉积高度方向平行的定向凝固枝晶组织,由于凝固偏析,MC型碳化物和γ-γ′共晶组织分布于定向凝固组织的枝晶间区域。激光快速成形Rene 80高温合金厚壁件含有许多长度大于10 mm,扩展方向与沉积高度方向平行的宏观裂纹。分析表明,这些裂纹为液化裂纹,其形成原因为:激光快速成形时,紧邻激光熔池的热影响区(HAZ)内沿晶界分布的低熔点γ-γ′共晶组织发生熔化,形成热影响区内沿晶界扩展的晶界液相,在热影响区冷却过程中,由于热影响区内固相的收缩应力作用,沿晶界扩展的固液界面被撕开,从而导致液化裂纹的产生。
Abstract
The microstructures and mechanism of cracks forming of a thick-wall part of Rene 80 superalloy fabricated by laser rapid forming (LRF) process are presented. Results show that the solidified microstructures of LRF Rene 80 high-temperature alloy consist of directionally solidified dendrites, which are parallel with the deposition direction. The MC type carbides and γ-γ′ eutectic distribute in interdendritic region of the directionally solidified microstructure due to element segregation. The LRF Rene 80 high-temperature alloy thick-wall part contains many macro cracks, which have the length of more than 10 mm and expand along the direction parallel to the deposition direction. Analyses indicate that these macro cracks are liquated cracks. During LRF process, the γ-γ′ eutectic with lower melting point particularly along the grain-boundary regions in heat-affected zone (HAZ) melt produced by laser melting pool and result in the formation of grain-boundary liquid. On the subsequent cooling process of the HAZ, the liquated cracks along the HAZ grain boundaries occurred by decohesion across the liquid-solid interface due to shrinkage stresses of solid phase in HAZ, while the liquated γ-γ′ eutectic is still liquid.
参考文献

[1] Kh. Rahmani, S. Nategh. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80[J]. Surface & Coatings Technology, 2008, 202(8): 1385~1391

[2] J. Safari, S. Nategh. On the heat treatment of Rene-80 nickel-base superalloy[J]. Journal of Materials Processing Technology, 2006, 176(1-3): 240~250

[3] W. sterle, S. Krause, T. Moelders et al.. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80[J]. Materials Characterization, 2008, 59(11): 1564~1571

[4] R. K. Sidhu, O. A. Ojo, M. C. Chaturvedi. Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment[J]. Journal of Materials Science, 2008, 43(10): 3612~3617

[5] 席明哲, 高士友. 激光快速成形Inconel 718超合金拉伸力学性能研究[J]. 中国激光, 2012, 39(3): 0303004

    Xi Mingzhe, Gao Shiyou. Research on tensile properties of Inconel 718 superalloy fabricated by laser rapid forming process[J]. Chinese J. Lasers, 2012, 39(3): 0303004

[6] 吴晓瑜, 林鑫, 吕晓卫 等. 激光立体成形17-PH不锈钢组织性能研究[J]. 中国激光, 2011, 38(2): 0203005

    Wu Xiaoyu, Lin Xin, Lü Xiaowei et al.. Study on microstructure and mechanical properties of laser forming 17-4 PH stainless steel[J]. Chinese J. Lasers, 2011, 38(2): 0203005

[7] X. M. Zhao, X. Lin, J. Chen et al.. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming[J]. Mater. Sci. Engng. A, 2009, 504(1-2): 129~134

[8] P. Ganesh, R. Kaul, C. P. Paul et al.. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures[J]. Mater. Sci. Engng. A, 2010, 527(29-30): 98~104

[9] 孙鸿卿, 钟敏霖, 刘文今 等. 定向凝固镍基高温合金上激光熔覆Inconel 738的裂纹敏感性研究[J]. 航空材料学报, 2005, 25(2): 27~31

    Sun Hongqing, Zhong Minglin, Liu Wenjin et al.. Cracking sensitivity on laser cladding Inconel 738 on directionally solidified Ni-base superalloy[J]. Journal of Aeronautical Materials, 2005, 25(2): 27~31

[10] 赵晓明, 陈静, 何飞 等. 激光快速成形Rene88DT高温合金开裂机理研究[J]. 稀有金属材料与工程, 2007, 36(2): 216~220

    Zhao Xiaoming, Chen Jing, He Fei et al.. The cracking mechanism of Rrene88DT superalloy by laser rapid forming[J]. Rare metal Materials and Engineering, 2007, 36(2): 216~220

[11] R. K. Sidhu, O. A. Ojo, M. C. Chaturvedi. Microstructural response of directionally solidified Rene80 superalloy to gas-tungsten arc welding[J]. Metallurgical and Materials Transactions A, 2009, 40(1): 150~162

[12] R. K. Sidhu, O. A. Ojo, M. C. Chaturvei. Microstructural analysis of laser-beam-welded directionally solidified Inconel 738[J]. Metallurgical and Materials Transactions A, 2007, 38(4): 858~870

[13] L. C. Lim, J. Z. Yi, N. Liu et al.. Mechanism of post-weld heat treatment cracking in Rene 80 nickel based superalloy[J]. Materials Science and Technology, 2002, 18(4): 407~412

席明哲, 高士友. 激光快速成形Rene 80高温合金组织及裂纹形成机理[J]. 中国激光, 2012, 39(8): 0803008. Xi Mingzhe, Gao Shiyou. Microstructures and Mechanism of Cracks Forming of Rene 80 High-Temperature Alloy Fabricated by Laser Rapid Forming Process[J]. Chinese Journal of Lasers, 2012, 39(8): 0803008.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!