中国激光, 2018, 45 (7): 0708001, 网络出版: 2018-09-11  

皮秒抽运的参量荧光的时间相干性 下载: 696次

Temporal Coherence of Parametric Fluorescence Pumped by Picosecond Pulses
作者单位
1 中国工程物理研究院上海激光等离子体研究所, 上海 201800
2 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
引用该论文

周南, 李大为, 崔勇, 徐光, 王韬. 皮秒抽运的参量荧光的时间相干性[J]. 中国激光, 2018, 45(7): 0708001.

Nan Zhou, Dawei Li, Yong Cui, Guang Xu, Tao Wang. Temporal Coherence of Parametric Fluorescence Pumped by Picosecond Pulses[J]. Chinese Journal of Lasers, 2018, 45(7): 0708001.

参考文献

[1] Manzoni C, Cirmi G, Brida D, et al. Optical-parametric-generation process driven by femtosecond pulses: timing and carrier-envelope phase properties[J]. Physical Review A, 2009, 79(3): 033818.

    Manzoni C, Cirmi G, Brida D, et al. Optical-parametric-generation process driven by femtosecond pulses: timing and carrier-envelope phase properties[J]. Physical Review A, 2009, 79(3): 033818.

[2] Linnenbank H, Linden S. High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR[J]. Optics Express, 2014, 22(15): 18072-18077.

    Linnenbank H, Linden S. High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR[J]. Optics Express, 2014, 22(15): 18072-18077.

[3] Macklin J J, Trautman J K, Harris T D, et al. Imaging and time-resolved spectroscopy of single molecules at an interface[J]. Science, 1996, 272(5259): 255-258.

    Macklin J J, Trautman J K, Harris T D, et al. Imaging and time-resolved spectroscopy of single molecules at an interface[J]. Science, 1996, 272(5259): 255-258.

[4] Teich M C. Saleh B E A, Wong F N C, et al. Variations on the theme of quantum optical coherence tomography: a review[J]. Quantum Information Processing, 2012, 11(4): 903-923.

    Teich M C. Saleh B E A, Wong F N C, et al. Variations on the theme of quantum optical coherence tomography: a review[J]. Quantum Information Processing, 2012, 11(4): 903-923.

[5] Wada O. Femtosecond all-optical devices for ultrafast communication and signal processing[J]. New Journal of Physics, 2004, 6(1): 183.

    Wada O. Femtosecond all-optical devices for ultrafast communication and signal processing[J]. New Journal of Physics, 2004, 6(1): 183.

[6] Harris S E, Oshman M K, Byer R L. Observation of tunable optical parametric fluorescence[J]. Physical Review Letters, 1967, 18(18): 732-734.

    Harris S E, Oshman M K, Byer R L. Observation of tunable optical parametric fluorescence[J]. Physical Review Letters, 1967, 18(18): 732-734.

[7] Le Gouët J, Venkatraman D. Wong F N C, et al. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification[J]. Optics Express, 2009, 17(20): 17874-17887.

    Le Gouët J, Venkatraman D. Wong F N C, et al. Classical low-coherence interferometry based on broadband parametric fluorescence and amplification[J]. Optics Express, 2009, 17(20): 17874-17887.

[8] Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23(5): 055601.

    Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Physics of Plasmas, 2016, 23(5): 055601.

[9] Pétrélis F, Aumaître S, Fauve S. Effect of phase noise on parametric instabilities[J]. Physical Review Letters, 2005, 94(7): 070603.

    Pétrélis F, Aumaître S, Fauve S. Effect of phase noise on parametric instabilities[J]. Physical Review Letters, 2005, 94(7): 070603.

[10] Wang Y, Lim H, Wise F, et al. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography[J]. Journal of the Optical Society of America A, 2005, 22(8): 1492-1499.

    Wang Y, Lim H, Wise F, et al. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography[J]. Journal of the Optical Society of America A, 2005, 22(8): 1492-1499.

[11] Picozzi A, Haelterman M. Influence of walk-off, dispersion, and diffraction on the coherence of parametric fluorescence[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 63(5): 056611.

    Picozzi A, Haelterman M. Influence of walk-off, dispersion, and diffraction on the coherence of parametric fluorescence[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 63(5): 056611.

[12] Picozzi A, Montes C, Haelterman M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(5): 056605.

    Picozzi A, Montes C, Haelterman M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(5): 056605.

[13] Genty G, Surakka M, Turunen J, et al. Complete characterization of supercontinuum coherence[J]. Journal of the Optical Society of America B, 2011, 28(9): 2301-2309.

    Genty G, Surakka M, Turunen J, et al. Complete characterization of supercontinuum coherence[J]. Journal of the Optical Society of America B, 2011, 28(9): 2301-2309.

[14] Dutta R, Turunen J, Genty G, et al. Temporal coherence characterization of supercontinuum pulse trains using Michelson’s interferometer[J]. Applied Optics, 2016, 55(12): B72-B77.

    Dutta R, Turunen J, Genty G, et al. Temporal coherence characterization of supercontinuum pulse trains using Michelson’s interferometer[J]. Applied Optics, 2016, 55(12): B72-B77.

[15] Fan J, Chen W, Gu C, et al. Noise characteristics of high power fiber-laser pumped femtosecond optical parametric generation[J]. Optics Express, 2017, 25(20): 24594-24603.

    Fan J, Chen W, Gu C, et al. Noise characteristics of high power fiber-laser pumped femtosecond optical parametric generation[J]. Optics Express, 2017, 25(20): 24594-24603.

[16] Paschotta R. Noise of mode-locked lasers (Part I): numerical model[J]. Applied Physics B: Lasers and Optics, 2004, 79(2): 153-162.

    Paschotta R. Noise of mode-locked lasers (Part I): numerical model[J]. Applied Physics B: Lasers and Optics, 2004, 79(2): 153-162.

[17] Trebino R, Bowlan P, Gabolde P, et al. Simple devices for measuring complex ultrashort pulses[J]. Laser & Photonics Reviews, 2009, 3(3): 314-342.

    Trebino R, Bowlan P, Gabolde P, et al. Simple devices for measuring complex ultrashort pulses[J]. Laser & Photonics Reviews, 2009, 3(3): 314-342.

[18] Dudley J M, Coen S. Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 651-659.

    Dudley J M, Coen S. Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 651-659.

[19] Gu X, Kimmel M, Shreenath A P, et al. Experimental studies of the coherence of microstructure-fiber supercontinuum[J]. Optics Express, 2003, 11(21): 2697-2703.

    Gu X, Kimmel M, Shreenath A P, et al. Experimental studies of the coherence of microstructure-fiber supercontinuum[J]. Optics Express, 2003, 11(21): 2697-2703.

周南, 李大为, 崔勇, 徐光, 王韬. 皮秒抽运的参量荧光的时间相干性[J]. 中国激光, 2018, 45(7): 0708001. Nan Zhou, Dawei Li, Yong Cui, Guang Xu, Tao Wang. Temporal Coherence of Parametric Fluorescence Pumped by Picosecond Pulses[J]. Chinese Journal of Lasers, 2018, 45(7): 0708001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!