High Power Laser Science and Engineering, 2018, 6 (1): 01000e12, Published Online: Jul. 3, 2018  

Laser system design for table-top X-ray light source Download: 925次

Author Affiliations
1 Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
2 Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
3 Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
4 Department of Electrical Engineering & Computer Science & Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
Figures & Tables

Fig. 1. Schematic representation of the THz-driven light source with the driving laser system. SC: single-cycle; MC: multi-cycle, ICS: inverse Compton scattering.

下载图片 查看原文

Fig. 2. Computed amplified spectral bandwidth as a function of seed energy in a Yb:YAG thin-disk regenerative amplifier ($\unicode[STIX]{x0394}\unicode[STIX]{x03BB}_{\text{Fluo}}=5$ nm).

下载图片 查看原文

Fig. 3. The cryogenic composite thin disk: in our approach, a thin Yb:YAG gain sheet is diffusion bonded to a thicker index-matched cap on one face while the other face is HR coated and soldered to a backplane high-performance cooler. See text for details.

下载图片 查看原文

Fig. 4. Photographs of the (a) 100 mJ and (b) 1 J Yb:YAG amplifier.

下载图片 查看原文

Fig. 5. (a) Measured output spectrum (black line) at the 10 mJ energy level along with seed spectrum (grey shaded region). (b) Measured output energy versus pump input fluence characteristics showing an output energy ${\sim}$90 mJ at full pump power.

下载图片 查看原文

Fig. 6. CAD modeling of (a) the grating compressor currently in use after a Yb:YAG high-energy amplifier and (b) the holder of the large grating in the first compressor built in our lab after the Yb:KYW regenerative amplifier[47]. (c) A newer version of the grating holder, implemented for the Yb:YLF laser system.

下载图片 查看原文

Fig. 7. Schematic of the two-stage OPA system to drive the UV generation setup. In the prism compressor located between the two OPA stages, a pulse shaper is implemented: knifes block the highest and lowest spectral components. WL: white-light generation, SHG: second harmonic generation, Comp: compressor.

下载图片 查看原文

Fig. 8. (a) Spectra of the first and second OPA stages (OPA1 and OPA2). (b) Autocorrelation trace of the second OPA stage after the prism compressor and the corresponding Gaussian fit.

下载图片 查看原文

Fig. 9. (a) Simultaneous measurement of the energy at the output of the Yb:KYW regenerative amplifier, pointing measured after the regenerative amplifier, and stretched spectrum. Only a fraction of the energy of the regenerative amplifier is measured without rescaling to the total energy. An rms value for the relative energy fluctuations of 0.8% is measured. The stretched spectrum was measured with a 12.5 GHz photodiode and a 4 GHz oscilloscope. (b) Long term measurement of the Yb:KYW regenerative amplifier output.

下载图片 查看原文

Fig. 10. (a) Measured 1-h stability of the regenerative amplifier output at the 10 mJ energy level. The computed shot-to-shot instabilities are less than $\pm 0.75\%$ rms over 1-h. In inset, the measured spatial intensity profile at 10 mJ output energy. (b) Measured output energy stability recorded over 3.5 h at ${\sim}$75 mJ output energy. The observable slow drift is attributed to a minor drift in seed energy of the current frontend. Energy instabilities less than $\pm 0.7\%$ over 3.2 h are routinely achieved.

下载图片 查看原文

Fig. 11. Pulse energy measurement of the compressed OPA output over 15 h.

下载图片 查看原文

Fig. 12. Schematic representation of the laser system based on cryo-Yb:YAG laser systems.

下载图片 查看原文

Fig. 13. Schematic representation of the laser system based on cryo-Yb:YLF and cryo-Yb:YAG laser systems.

下载图片 查看原文

Fig. 14. Schematic representation of the laser system based on RT-Yb:YAG laser systems.

下载图片 查看原文

Fig. 15. Layout of two Yb:YAG laser chains on one optical table. The seed pulses are fiber delivered. The delay stage (dt) is followed by the Yb:KYW regenerative amplifier (REG), followed by the two CTD amplifiers with a relay imaging telescope (R.Tel) in between. After the regenerative amplifier and the first CTD amplifier, there is a pointing stabilizer. The spatial profile of the beam is measured after each stage. The alignment laser for first alignment of the 100 mJ CTD is represented.

下载图片 查看原文

Table1. Summary of the requirements of each laser chain. The THz energy takes into account the transport losses (for single-cycle THz pulses, twice the required energy within the gun is accounted for, and ${\sim}1.5$ for multi-cycle THz pulses).

Photocathode laserGun lasersLINAC laserICS laser
THz energy [mJ]130
IR/UV energy [J]$100\times 10^{-9}$$200\times 10^{-9}$0.1–110.1–1
Conversion efficiency needed215
THz pulse structureSCMC
THz duration [ps]${<}$10200
IR/UV duration [ps]0.04–0.10.8–52000.8–5
Central wavelength [nm]2531020–1030
Repetition rate [Hz]100–1000
IR beam qualityGaussianSuper-GaussianSuper-GaussianSuper-Gaussian
Energy stability${<}$0.1%
Pointing stability${<}$3% of DL

查看原文

Table2. Summary of the spectroscopic and thermo-optic properties of Yb:YAG at RT and CT and Yb:YLF at cryogenic temperature.

ParameterYb:YAGYb:YAGYb:YLF
@ RT@ CT@ CT
Lifetime [ms]0.9512
Absorption wavelength [nm]940938
Emission wavelength [nm]10301029.51020
Emission bandwidth [nm]${\sim}9$${<}$1.310
Absorption cross-section [$10^{-20}~\text{cm}^{-2}$]0.81.61
Emission cross-section [$10^{-20}~\text{cm}^{-2}$]2.2${\sim}10$1.8
Saturation fluence [$\text{J}\cdot \text{cm}^{-2}$]101.620
Thermal conductivity [$\text{W}\cdot \text{m}^{-1}\cdot \text{K}^{-1}$]124724
Nonlinear refractive index coefficient [$10^{-16}~\text{cm}^{2}\cdot \text{W}^{-1}$]6.26.21.7
$\text{d}n/\text{d}T$ [$10^{-6~}~\text{K}^{-1}$]7.80.91.2

查看原文

Table3. Description of the main outputs of the frontend.

Frontend Description
output
#1Seed for laser for multi-cycle terahertz generation (two laser lines)
#2Ultra-short pulse seed for ICS laser-beam line
#3Ultra-short pulse seed for gun lasers
#4Ultra-short pulse for diagnostics such as electro-optical sampling

查看原文

Table4. Summary of the pulse parameters after each module of the CT Yb:YAG laser chain.

OscStretchRegenTel ICryo ITel IICryo IITransportCompr
$f_{\text{rep}}$70 MHz70 MHz1 kHz1 kHz100 Hz(1 kHz)(1 kHz)(1 kHz)(1 kHz)
100Hz100 Hz100 Hz100 Hz
$\unicode[STIX]{x03BB}_{0}$1029.5 nm
$\unicode[STIX]{x0394}\unicode[STIX]{x03BB}$5–10 nm${\sim}$2–3 nm2–2.5 nm2–2.5 nm0.5 nm0.5 nm0.3 nm0.3 nm0.3 nm
E${\sim}$nJ${\sim}$nJ5 mJ5 mJ100 mJ100 mJ1.2 J1.2 J1 J
$\unicode[STIX]{x1D70F}$${<}$200 fs1.6–2.4 ns1.6–2 ns0.4 ns0.4 ns0.4 ns0.4 ns0.4 ns4 ps
B${<}$1.5${<}$0.0010.4850.0130.4890.148

查看原文

Table5. Summary of the pulse parameters after each module of the RT-Yb:YAG laser chain.

OscStretchRegenCompr
$f_{\text{rep}}$70 MHz70 MHz1 kHz(1 kHz)
100 Hz100 Hz
$\unicode[STIX]{x03BB}_{\text{0}}$1030 nm
$\unicode[STIX]{x0394}\unicode[STIX]{x03BB}$5–10 nm${\sim}$5 nm2 nm2 nm
E${\sim}$nJ${\sim}$nJ130 mJ100 mJ
$\unicode[STIX]{x1D70F}$${<}$200 fs3.25 ns1.3 ns1–2 ps

查看原文

Table6. Summary of the pulse parameters after each module of the CT-Yb:YLF laser chain.

OscStretchRegenCryo ICompr
$f_{\text{rep}}$70 MHz70 MHz100 Hz100 Hz100 Hz
$\unicode[STIX]{x03BB}_{0}$1020 nm
$\unicode[STIX]{x0394}\unicode[STIX]{x03BB}$5–10 nm${\sim}$2–3 nm2.1 nm2 nm2 nm
E${\sim}$nJ${\sim}$nJ10 mJ100 mJ70 mJ
$\unicode[STIX]{x1D70F}$${<}$200 fs${\sim}$0.7–1 ns0.7 ns0.66 ns750 fs

查看原文

Table7. Diagnostics for the modules.

DiagnosticSeederStretcherYb:KYWYb:YAGYb:YAGYb:YLFYb:YLFCompressorsUV
regenCTD 100 mJCTD 1 JRegenbooster
PowerX
EnergyXXXXXXXXX
ReprateXXXX
Temporal profileXXXXXXXX
SpectrumXX
Beam profileXXXXXXX
CurrentsXXXXX
Diode and crystal temperaturesXXXXX
Diode power before and after crystalXX
TemperatureXXXXXXXX
HumidityXXXXXXXX
LN2 levelXXXX
ChillerXXXXX
VacuumXXXX

查看原文

Anne-Laure Calendron, Joachim Meier, Michael Hemmer, Luis E. Zapata, Fabian Reichert, Huseyin Cankaya, Damian N. Schimpf, Yi Hua, Guoqing Chang, Aram Kalaydzhyan, Arya Fallahi, Nicholas H. Matlis, Franz X. Kärtner. Laser system design for table-top X-ray light source[J]. High Power Laser Science and Engineering, 2018, 6(1): 01000e12.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!