Journal of Innovative Optical Health Sciences, 2018, 11 (4): 1850021, Published Online: Oct. 6, 2018   

Simultaneous quantification of longitudinal and transverse ocular chromatic aberrations with Hartmann–Shack wavefront sensor

Author Affiliations
1 The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
2 The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract
A simple method to objectively and simultaneously measure eye's longitudinal and transverse chromatic aberrations was proposed. A dual-wavelength wavefront measurement system using two Hartmann–Shack wavefront sensors was developed. The wavefronts of the red (639.1 nm) and near-infrared (786.0 nm) lights were measured simultaneously for different positions in the model eye. The chromatic wavefronts were converted into Zernike polynomials. The Zernike tilt coe±cient (first term) was used to calculate the transverse chromatic aberration along the x-direction, while the Zernike defocus coe±cient (fourth term) was used to calculate the longitudinal chromatic aberration. The measurement and simulation data were consistent.
References

[1] J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).

[2] F. Reinholz, R. A. Ashman, R. H. Eikelboom, “Simultaneous three wavelength imaging with a scanning laser ophthalmoscope," Cytometry 37(3), 165–170 (1999).

[3] K. Grieve, P. Tiruveedhula, Y. Zhang, A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14(25), 12230–12242 (2006).

[4] W. M. Harmening, P. Tiruveedhula, A. Roorda, “Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye," Biomed. Opt. Express 3(9), 2066–2077 (2012).

[5] K. Ohnuma, H. Kayanuma, T. Lawu, K. Negishi, T. Yamaguchi, T. Noda, “Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations," Biomed. Opt. Express 2(6), 1443–1457 (2011).

[6] P. Perez-Merino, C. Dorronsoro, L. Llorente, S. Duran, I. Jimenez-Alfaro, S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses," Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).

[7] M. Nakajima, T. Hiraoka, T. Yamamoto, S. Takagi, Y. Hirohara, T. Oshika, T. Mihashi, “Differences of longitudinal chromatic aberration (LCA) between eyes with intraocular lenses from different manufacturers," PLoS ONE 11(6), e0156227 (2016).

[8] M. Vinas, C. Dorronsoro, N. Garzon, F. Poyales, S. Marcos, “In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses," J. Cataract. Refract. Surg. 41(10), 2115–2124 (2015).

[9] M. A. Gil et al., “Comparison of far and near contrast sensitivity in patients symmetrically implanted with multifocal and monofocal IOLs," Eur. J. Ophthalmol. 24(1), 44–52 (2013).

[10] W. W. Hutz, R. Jackel, P. C. Hoffman, “Comparison of visual performance of silicone and acrylic multifocal IOLs utilizing the same diffractive design," Acta Ophthalmol. 90(6), 530–533 (2012).

[11] G. Wald, D. R. Gri±n, “The change in refractive power of the human eye in dim and bright light," J. Opt. Soc. Am. 37(5), 321–336 (1947).

[12] M. C. Rynders, R. Navarro, M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vis. Res. 38(4), 513–522 (1998).

[13] S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations," Vis. Res. 39(26), 4309–4323 (1999).

[14] E. Fernandez, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13(2), 400–409 (2005).

[15] S. Manzanera, C. Canovas, P. M. Prieto, P. Artal, “A wavelength tunable wavefront sensor for the human eye," Opt. Express 16(11), 7748–7755 (2008).

[16] P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388–1398 (2000).

[17] J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor," J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).

[18] M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics," Biomed. Opt. Express 6(3), 948–962 (2015).

[19] J. Otero-Millan, X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, S. Martinez-Conde, “Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator," J. Vis. 8(14), 21-1–21-18 (2008).

[20] S. Martinez-Conde, S. L. Macknik, “Fixational eye movements across vertebrates: Comparative dynamics, physiology, and perception," J. Vis. 8(14), 28-1–28-16 (2008).

[21] B. Jaeken, L. Lundstr€om, P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration," J. Opt. Soc. Am. A 28(9), 1871–1879 (2011).

[22] H. Hartridge, “The visual perception of fine detail," Philos. Trans. R. Soc. B, Biol. Sci. 232, 519–671 (1947).

[23] Y. U. Ogboso, H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye," J. Opt. Soc. Am. A 4(8), 1666–1672 (1987).

[24] M. Rynders, B. Lidkea, W. Chisholm, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle in a population of young adult eyes," J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).

[25] L. Lundstr€om et al., “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15(20), 12654–12661 (2007).

[26] S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, D. H. Hubel, “Microsaccades: A neurophysiological analysis," Trends Neurosci. 32(9), 463–475 (2009).

[27] S. Winter et al., “Transverse chromatic aberration across the visual field of the human eye," J. Vis. 16(14), 9 (2016).

[28] J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur," Nature 417(9), 174–176 (2002).

[29] L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, P. A. Howarth, “Theory and measurement of ocular chromatic aberration," Vis. Res. 30(1), 33–49 (1990).

[30] G. M. Dai, Ocular wavefront sensing and reconstruction, Wavefront Optics for Vision Correction, pp. 97–119, SPIE Press, Bellingham (2008).

[31] J. Nam, J. Rubinstein, L. Thibos, “Wavelength adjustment using an eye model from aberrometry data," J. Opt. Soc. Am. A 27(7), 1561–1574 (2010).

[32] P. Artal, S. Marcos, D. R. Williams, R. Navarro, “Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12(2), 195–201 (1995).

[33] A. Guirao, N. Lopez-Gil, P. Artal, Double-pass measurements of retinal image quality: A review of the theory, limitations and results, Proc. 2000 Conf. Vision Science and its Applications, Optical Society of America, Washington, DC (2000).

[34] P. Artal, I. C. Iglesias, N. Lopez-Gil, “Double pass system with unequal entrance and exit pupil sizes to measure the optical transfer function of the human eye," Proc. SPIE 2632, 56–61 (1996).

[35] Laser Institute of America, ANSI Standard Z136.1: American National Standard for the Safe Use of Lasers (2014).

[36] D. R. Neal, J. Copland, D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy," Proc. SPIE 4779, 148–160 (2002).

[37] L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: A new reduced-eye model of ocular chromatic aberration in humans," Appl. Opt. 31(19), 3594–3600 (1992).

[38] D. A. Atchison, G. Smith, “Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22(1), 29–37 (2005).

Yangchun Deng, Junlei Zhao, Yun Dai, Yudong Zhang. Simultaneous quantification of longitudinal and transverse ocular chromatic aberrations with Hartmann–Shack wavefront sensor[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850021.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!