中国激光, 2012, 39 (2): 0202009, 网络出版: 2012-01-06   

基于石墨烯被动调Q Nd:YAG晶体微片激光器 下载: 523次

Passively Q-Switched Nd:YAG Microchip Laser Based on Graphene
作者单位
北京工业大学激光工程研究院, 北京 100124
摘要
设计了以石墨烯作为可饱和吸收体的被动调Q掺钕钇铝石榴石晶体(Nd:YAG)微片激光器。该激光器采用三明治结构,附有石墨烯薄层的YAG晶体紧密压贴于工作物质Nd:YAG晶体上,晶体端面镀膜作为端面镜构成平行平面谐振腔。采用光纤耦合输出激光二极管端面抽运技术,利用石墨烯的可饱和吸收作用,在注入功率为1.17 W时实现微片激光器的调Q运转,获得波长1064.6 nm,重复频率300~807 kHz可调,最小脉冲宽度75 ns的激光输出。激光器最大输出功率38.4 mW,最大单脉冲能量54.7 nJ。
Abstract
A design passively Q-switched Nd:YAG microchip laser based on graphene saturable absorber is presented. A thin layer of graphene is sandwiched between the Nd:YAG crystal and YAG crystal closely, and dichroic coatings on crystals is used as reflective mirrors for the plane parallel resonator. The Nd:YAG crystal is end pumped by a fiber-coupled laser diode via a lens imaging system. Employing graphene as saturable absorber, Q-switched Nd:YAG microchip laser is realized at the pump power threshold of 1.17 W with laser central wavelength of 1064.6 nm. The minimum pulse duration is 75 ns at 488 kHz and the repetition rate is tunable from 300 to 807 kHz with the increase of the pump power. The maximum output power and highest pulse energy of the laser measured are 38.4 mW and 54.7 nJ respectively.
参考文献

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666~669

[2] F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4: 611~622

[3] Amos Martinez, Kazuyuki Fuse, Bo Xu et al.. Optical deposition of graphene ande carbon nanotubes in afiber ferrule for passive mode-locked lasing[J]. Opt. Express, 2010, 18(22): 23054~23061

[4] 王淑香, 陈云琳. 微片激光器的最新研究进展[J]. 量子电子学报, 2007, 24(4): 401~406

    Wang Shuxiang, Chen Yunlin. Survey of microchip lasers[J]. Chinese Journal of Quantum Electronics, 2007, 24(4): 401~406

[5] 刘磊, 张大勇. LD紧耦合泵浦被动调Q微型激光器实验研究[J]. 激光与红外, 2010, 40(6): 609~612

    Liu Lei, Zhang Dayong. A tightly coupled diode pumped micro laser with passive Q-switch[J]. Laser & Infrared, 2010, 40(6): 609~612

[6] D. Nodop, J. Limpert. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime[J]. Opt. Lett., 2007, 32(15): 2115~2117

[7] Keun Soo Kim,Yue Zhao, Houk Jang et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706~710

[8] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558~1565

[9] Claire Berger, Song Zhimin, Walt A. de Heer et al.. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B, 2004, 108(52): 19912~19916

[10] Xu Jinlong, Li Xianlei, Wu Yongzhong et al.. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett., 2011, 36(10): 1948~1950

[11] Li Xianlei, Xu Jinlong, Wu Yongzhong et al.. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Opt. Express, 2011, 19(10): 9950~9955

[12] Wang Qing, Wei Zhiyi, Lin Jingjing et al.. Few-layer graphene as saturable absorber for Q-switched laser at sub-MHz repetition rate[C]. Istanbul, Turkey. Advances in Optical Materials (AIOM). Opt. Soc. Am., 2011: AIThF3

[13] Yu Haohai, Chen Xiufang, Zhang Huaijing et al.. Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide[J]. Acsnano, 2010, 4(12): 7582~7586

[14] Yu Haohai, Chen Xiufang, Zhang Huaijin et al.. Graphene as a Q-switcher for neodymium-doped lutetium vanandate laser[J]. Appl. Phys. Express, 2011, 4(2): 022704

[15] C. C. Lee, G. Acosta, S. Bunch et al.. Mode-Locking of an ErYbglass laser with single layer graphene[C]. Snowmass Village, CO. International Conference on Ultrafast Phenomena (UP), 2010: TuE29

[16] 刘江, 魏汝省, 徐佳 等. 基于6H-SiC衬底外延石墨烯的被动锁模掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802003

    Liu Jiang, Wei Rusheng, Xu Jia et al.. Passively mode-locked Yb-doped fiber laser with graphene epitaxially grown on 6H-SiC substrates[J]. Chinese J. Lasers, 2011, 38(8): 0802003

[17] 刘江, 吴思达, 王科 等. 基于石墨烯可饱和吸收体的被动锁模、被动调Q掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802001

    Liu Jiang, Wu Sida, Wang Ke et al.. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J. Lasers, 2011, 38(8): 0802001

[18] G. J. Spühler, R. Paschotta, R. Fluck et al.. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers[J]. Opt. Soc. Am., 1999, B-16: 376

曹镱, 刘佳, 刘江, 王璞. 基于石墨烯被动调Q Nd:YAG晶体微片激光器[J]. 中国激光, 2012, 39(2): 0202009. Cao Yi, Liu Jia, Liu Jiang, Wang Pu. Passively Q-Switched Nd:YAG Microchip Laser Based on Graphene[J]. Chinese Journal of Lasers, 2012, 39(2): 0202009.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!