Matter and Radiation at Extremes, 2020, 5 (6): 065201, Published Online: Nov. 24, 2020   

Development of low-coherence high-power laser drivers for inertial confinement fusion Download: 554次

Author Affiliations
1 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
2 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
3 School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Copy Citation Text

Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201.

References

[1] J. W.Goodman, Speckle Phenomena in Optics: Theory and Applications (Greenwood Village: Roberts and Company, 2007).

[2] E. I. Gordon, J. D. Rigden. The granularity of scattered optical maser light. Proc. IRE, 1962, 50: 2367-2368.

[3] W. Burns, C.-L. Chen, R. Moeller. Fiber-optic gyroscopes with broad-band sources. J. Lightwave Technol., 1983, 1: 98-105.

[4] J. Edwards, O. Landen, J. Lindl, et al.. Review of the National Ignition Campaign 2009-2012. Phys. Plasmas, 2014, 21(2): 020501.

[5] C. Labaune. Incoherent light on the road to ignition. Nat. Phys., 2007, 3: 680-682.

[6] P. Amendt, R. L. Berger, J. D. Lindl, et al.. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 2004, 11(2): 339-491.

[7] K. S. Anderson, T. R. Boehly, R. S. Craxton, et al.. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 2015, 22: 110501.

[8] Z.Fan, M.Chen, Z.Daiet al., “A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion,” [physics.plasm-ph] (2013).

[9] R. Betti, D. Shvarts, V. A. Smalyuk, et al.. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators. Phys. Rev. Lett., 2008, 100: 185005.

[10] Y. Aglitskiy, M. Karasik, J. L. Weaver, et al.. Suppression of laser nonuniformity imprinting using a thin high-Z coating. Phys. Rev. Lett., 2015, 114: 085001.

[11] D. S. Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasma, 2016, 23(5): 055601.

[12] L. Divol, D. H. Froula, S. H. Glenzer, et al.. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys., 2007, 3: 716-719.

[13] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933-4024.

[14] D. A. Callahan, D. T. Casey, O. A. Hurricane, et al.. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 2014, 506: 343-348.

[15] M. Hohenberger, J. A. Marozas, M. J. Rosenberg, et al.. First observation of cross-beam energy transfer mitigation for direct-drive inertial confinement fusion implosions using wavelength detuning at the National Ignition Facility. Phys. Rev. Lett., 2018, 120(8): 085001-1-085001-6.

[16] T. J. Kessler, G. N. Lawrence, Y. Lin. Distributed phase plates for super-Gaussian focal-plane irradiance profiles. Opt. Lett., 1995, 20(7): 764-766.

[17] Y. Kato, K. Mima, N. Miyanaga, et al.. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 1984, 53: 1057-1060.

[18] T. J. Kessler, G. N. Lawrence, Y. Lin. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance. Opt. Lett., 1996, 21(20): 1703-1705.

[19] Z. Chen, X. Deng, X. Liang, et al.. Uniform illumination of large targets using a lens array. Appl. Opt., 1986, 25(3): 377-381.

[20] T. Kessler, R. W. Short, S. Skupsky, et al.. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys., 1989, 66(8): 3456-3462.

[21] R. L. Berger, L. M. Divol, S. H. Glenzer, et al.. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys. Plasmas, 2001, 8(5): 1692-1696.

[22] S. E. Bodner, R. H. Lehmberg, A. J. Schmitt. Theory of induced spatial incoherence. J. Appl. Phys., 1987, 62(7): 2680-2701.

[23] C. Gouédard, G. Thiell, D. Véron. Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique. Opt. Commun., 1993, 97(3–4): 259-271.

[24] C. Bibeau, R. B. Ehrlich, D. R. Speck, et al.. Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system. Appl. Opt., 1992, 31(27): 5799-5809.

[25] E. M. Campbell, V. N. Goncharov, S. P. Regan, et al.. National direct-drive program on OMEGA and the National Ignition Facility. Plasma. Phys. Controlled Fusion, 2017, 59: 014008.

[26] M. Bowers, K. R. Manes, M. L. Spaeth, et al.. National Ignition Facility laser system performance. Fusion Sci. Technol., 2016, 69(1): 366-394.

[27] J. L. Bourgade, C. Cavailler, N. Fleurot. The Laser Mégajoule (LMJ) project dedicated to inertial confinement fusion: Development and construction status. Fusion Eng. Des., 2005, 74(1-4): 147-154.

[28] C. Yamanaka. Gekko XII glass laser system. Rev. Laser Eng., 1983, 11(8): 586-611.

[29] Y. Ding, S. Jiang, F. Wang, et al.. Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China. Nucl. Fusion, 2019, 59: 032006.

[30] J. E. Rothenberg. Polarization beam smoothing for inertial confinement fusion. J. Appl. Phys., 2000, 87(8): 3654.

[31] J. H. Gardner, A. N. Mostovych, S. P. Obenschain, et al.. Brillouin scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light. Phys. Rev. Lett., 1987, 59(11): 1193-1196.

[32] L. Divol, P. Michel, J. D. Moody, et al.. Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys., 2012, 8: 344-349.

[33] R. Betti, O. A. Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 2016, 12: 435-448.

[34] R. H. Lehmberg, S. Obenschain, M. S. Pronko, et al.. Efficient second harmonic conversion of broad-band high-peak-power Nd:glass laser radiation using large-aperture KDP crystal in quadrature. IEEE J. Quantum Electron., 1990, 26(2): 337-347.

[35] T. Kanabe, N. Miyanaga, M. Nakatsuka, et al.. Partially coherent light sources for ICF experiment. Proc. SPIE, 1993, 1870: 151-162.

[36] S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, et al.. Lasers for ICF with a controllable function of mutual coherence of radiation. J. Russ. Laser Res., 2004, 25(1): 79-92.

[37] E. L. Dewald, S. H. Glenzer, O. L. Landen, et al.. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility. Plasma Phys. Controlled Fusion, 2005, 47: B405-B417.

[38] H. Jia, X. Tian, R. Zhang, et al.. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing. Opt. Laser. Eng., 2016, 85: 38-47.

[39] A. N.Starodub, S. I.Fedotov, A. A.Kozhevnikova, et al., “Interaction of partially coherent laser radiation with matter,” Proc. SPIE6595, 65950A (2007).

[40] C. Dorrer, E. M. Hill, J. D. Zuegel. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express, 2020, 28(1): 451-471.

[41] J. W. Bates, J. F. Myatt, J. G. Shaw, et al.. Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth. Phys. Rev. E, 2018, 97: 061202.

[42] M. Chen, S. Weng, Y. Zhao, et al.. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2017, 2: 190-196.

[43] Y. Cui, Y. Gao, D. Rao, et al.. 1 μJ nanosecond low-coherent laser source with precise temporal shaping and spectral control. Opt. Laser Technol., 2020, 122: 105850.

[44] Y. Cui, Y. Gao, D. Rao, et al.. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett., 2019, 44(11): 2859-2862.

[45] L. Ji, D. Liu, X. Zhao, et al.. High-efficiency second-harmonic generation of low-temporal-coherent light pulse. Opt. Lett., 2019, 44(17): 4359-4362.

[46] L. L. Ji, D. Liu, X. H. Zhao, et al.. Second-harmonic generation of temporally low-coherence light. APL Photonics, 2020, 5(9): 091301.

[47] Y. Q. Gao, F. J. Li, X. H. Zhao, et al.. Induced spatial incoherence combined with continuous phase plate for the improved beam smoothing effect. Opt. Eng., 2018, 57: 066117.

[48] Y. Gao, F. Li, X. Zhao, et al.. Beam smoothing by a diffraction-weakened lens array combining with induced spatial incoherence. Appl. Opt., 2019, 58(8): 2121-2126.

[49] Y. Gao, F. Li, X. Zhao, et al.. Experiment and theory of beam smoothing using induced spatial incoherence with lens array. Appl. Opt., 2020, 59(10): 2976-2982.

[50] Y.Gao, L.Ji, X.Zhaoet al., “Low-coherence high-power laser facility” (submitted).

[51] M. W. Bowers, G. V. Erbert, P. J. Wisoff, et al.. NIF injection laser system. Proc. SPIE, 2004, 5341: 146-155.

[52] M. Bowers, S. Burkhart, S. Cohen, et al.. The injection laser system on the National Ignition Facility. Proc. SPIE, 2007, 6451: 64511M.

[53] W. Fan, Y. Jiang, J. Wang, et al.. Progress of the injection laser system of SG-II. High Power Laser Sci., 2018, 6: e34.

[54] T. Kanabe, H. Nakano, K. Yagi, et al.. Amplification and propagation of partially coherent amplified spontaneous emission from Nd:glass. Opt. Commun., 1990, 78(2): 123.

[55] N. Miyanaga, H. Nakano, K. Tsubakimoto, et al.. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system. J. Appl. Phys., 1993, 73(5): 2122.

[56] N. Miyanaga, H. Nakano, K. Yagi, et al.. Partially coherent light generated by using single and multimode optical fibers in a high‐power Nd:glass laser system. Appl. Phys. Lett., 1993, 63(5): 580.

[57] V. G. Dmitriev, M. V. Osipov, V. N. Puzyrev, et al.. Nonlinear optical conversion of Nd:glass laser multimode radiation into the second harmonic in KDP crystal. J. Phys. B: At., Mol. Opt. Phys., 2012, 45(16): 165401.

[58] N. A.Fleurot, M. A.Andre, P.Estraillieret al., “Output pulse and energy capabilities of the PHEBUS laser facility,” paper presented at the Industrial and Scientific Uses of High-Power Lasers, 1991.

[59] L.Videau, A. C. L.Boscheron, J. C.Garnieret al., “Recent results of optical smoothing on the PHEBUS laser,” Proc. SPIE3047, 757 (1997).

[60] J. M. Auerbach, C. A. Haynam, P. J. Wegner, et al.. National Ignition Facility laser performance status. Appl. Opt., 2007, 46(16): 3276.

[61] L. M. Frantz, J. S. Nodvik. Theory of pulse propagation in a laser amplifier. J. Appl. Phys., 1963, 34: 2346.

[62] C. Gouedard, G. Thiell, D. Veron, et al.. Focal spot smoothing by amplification of reduced coherence pulse in the high power Nd-glass PHEBUS laser. Proc. SPIE, 1993, 1870: 140-150.

[63] P. Donnat, C. Gouédard, D. Veron, et al.. Induced spatial incoherence and nonlinear effects in Nd:glass amplifiers. Opt. Lett., 1992, 17(5): 331-333.

[64] E. Bar, C. Rouyer, L. Videau, et al.. Control of the amplification of large band amplitude modulated pulses in Nd-glass amplifier chain. Proc. SPIE, 1998, 3492: 277-284.

[65] J. P. Fouque, J. Garnier, L. Videau, et al.. Amplification of broadband incoherent light in homogeneously broadened media in the presence of Kerr nonlinearity. J. Opt. Soc. Am. B, 1997, 14(10): 2563-2569.

[66] J. Garnier, C. Gouédard, L. Videau, et al.. Propagation and amplification of incoherent pulses in dispersive and nonlinear media. J. Opt. Soc. Am. B, 1998, 15(11): 2773-2781.

[67] P. A. Franken, A. E. Hill, C. W. Peters, et al.. Generation of optical harmonics. Phys. Rev. Lett., 1961, 7(4): 118-119.

[68] N. Bloembergen, P. S. Pershan. Light waves at boundary of nonlinear media. Phys. Rev., 1962, 128(2): 606-622.

[69] R. Eckardt, J. Reintjes. Phase matching limitations of high efficiency second harmonic generation. IEEE J. Quantum Electron., 1984, 20(10): 1178-1187.

[70] O. E. Martinez. Achromatic phase matching for second harmonic generation of femtosecond pulses. IEEE J. Quantum Electron., 1989, 25: 2464-2468.

[71] Z. Bor, G. Szabo. Broadband frequency doubler for femtosecond pulses. Appl. Phys. B, 1990, 50: 51-54.

[72] S. E. Bisson, B. A. Richman, R. Trebino, et al.. Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms. Opt. Lett., 1998, 23: 497-499.

[73] M. Brown. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs. Opt. Lett., 1998, 23: 1591-1593.

[74] S. Ashihara, K. Kuroda, T. Shimura. Group-velocity matched second-harmonic generation in tilted quasiphase-matched gratings. J. Opt. Soc. Am. B, 2003, 20: 853-856.

[75] E. M. Garmire, G. Y. Wang. High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry. Opt. Lett., 1994, 19: 254-256.

[76] S. B. Fleischer, G. Lenz, L. E. Nelson, et al.. Efficient frequency doubling of a femtosecond fiber laser. Opt. Lett., 1996, 21: 1759-1761.

[77] X. Liu, L. Qian, F. W. Wise. Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5. Opt. Commun., 1997, 144: 265-268.

[78] M. Cha, J. H. Ro, N. E. Yu, et al.. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band. Opt. Lett., 2002, 27: 1046-1048.

[79] D. Eimerl, S. P. Velsko, M. S. Webb. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP. J. Opt. Soc. Am. B, 1992, 9: 1118-1127.

[80] L. Ji, C. Liu, B. Zhu, et al.. Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm. Chin. Opt. Lett., 2014, 12(3): 031902.

[81] J. M. Auerbach, C. E. Barker, D. Eimerl, et al.. Multicrystal designs for efficient third-harmonic generation. Opt. Lett., 1997, 22(16): 1208-1210.

[82] Optomechanical system,” in OMEGA System Operations Manual: Volume I–System Description (Laboratory for Laser Energetics, University of Rochester, 2003), Chap. 5.

[83] A. Babushkin, R. S. Craxton, S. Oskoui, et al.. Demonstration of the dual-tripler scheme for increased-bandwidth third-harmonic generation. Opt. Lett., 1998, 23: 927-929.

[84] A. C. L. Boscheron, D. Husson, F. Raoult, et al.. Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching. Opt. Lett., 1999, 24(5): 354-356.

[85] A. C. L. Boscheron, A. Migus, C. J. Sauteret. Efficient broadband sum frequency based on controlled phase-modulated input fields: Theory for 351-nm ultrabroadband or ultrashort-pulse generation. J. Opt. Soc. Am. B, 1996, 13: 818-826.

[86] L. J. Qian. Chirp matched third-harmonic generation for broad-band laser. Acta. Opt. Sin., 1995, 15(6): 662-664.

[87] Y. Chen, L. Qian, P. Yuan. A broadband frequency-tripling scheme for an Nd:glass laser-based chirped-pulse amplification system: An approach for efficiently generating ultraviolet petawatt pulses. J. Opt., 2011, 13(7): 075205.

[88] T. Wang, W. Zheng, H. Zhu, et al.. Efficient second harmonic generation of femtosecond laser at 1 μm. Opt. Express, 2004, 12(10): 2150-21555.

[89] A. Arie, E. Rozenberg. Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal. Opt. Lett., 2019, 44(13): 3358-3361.

[90] L. Qian, P. Yuan, W. Zheng, et al.. Broadband frequency tripling based on segmented partially deuterated KDP crystals. J. Opt. A: Pure Appl. Opt., 2007, 9(11): 1082-1086.

[91] K. Lee, S. Skupsky. Uniformity of energy deposition for laser driven fusion. J. Appl. Phys., 1983, 54: 3662-3671.

[92] S. N. Dixit, I. M. Thomas, B. W. Woods, et al.. Random phase plates for beam smoothing on the Nova laser. Appl. Opt., 1993, 32(14): 2543-2554.

[93] J. J. Armstrong, J. K. Terrance, L. Ying, et al.. Phase conversion of lasers with low-loss distributed phase plates. Proc. SPIE, 1993, 1870: 95.

[94] S. N. Dixit, J. K. Lawson, K. R. Manes, et al.. Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 1994, 19(6): 417-419.

[95] J. A. Marozas. Fourier transform-based continuous phase-plate design technique: A high-pass phase-plate design as an application for OMEGA and the National Ignition Facility. J. Opt. Soc. Am. A, 2007, 24(1): 74-83.

[96] R. H. Lehmberg, S. P. Obenschain. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 1983, 46: 27-31.

[97] C. K. Manka, S. P. Obenschain, T. A. Peyser, et al.. Reduction of 3ω0/2 emission from laser‐produced plasmas with broad bandwidth, induced spatial incoherence at 0.53 μm. Phys. Fluids B, 1991, 3(6): 1479-1484.

[98] R. S. Craxton, S. Skupsky. Irradiation uniformity for high-compression laser-fusion experiments. Phys. Plasmas, 1999, 6(5): 2157-2163.

[99] R. S. Craxton, J. A. Marozas, S. P. Regan, et al.. Performance of 1-THz-bandwidth two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams. J. Opt. Soc. Am. B, 2005, 22(5): 998.

[100] G. Miyaji, N. Miyanaga, S. Urushihara, et al.. Three-directional spectral dispersion for smoothing of a laser irradiance profile. Opt. Lett., 2002, 27(9): 725-727.

[101] J. E. Rothenberg. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion. J. Opt. Soc. Am. B, 1997, 14(7): 1664-1671.

[102] S. N. Dixit, D. M. Pennington, T. L. Weiland, et al.. Implementation and performance of beam smoothing on 10 beams of the Nova laser. Proc. SPIE, 1997, 3047: 725-735.

[103] T. E.Gunderman, J.Lee, T. J.Kessleret al., “Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,” in Conference on Lasers and Electro-Optics, OSA Technical Digest. 7, CTHC7 (1990).

[104] H. Nakano, M. Nakatsuka, K. Tsubakimoto, et al.. Suppression of interference speckles produced by a random phase plate, using a polarization control plate. Opt. Commun., 1992, 91: 9-12.

[105] T. R. Boehly, D. D. Meyerhofer, V. A. Smalyuk, et al.. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser. J. Appl. Phys., 1999, 85(7): 3444.

[106] S. E. Bodner, D. Colombant, S. P. Obenschain, et al.. The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas, 1996, 3: 2098-2107.

[107] H. Ayral, C. Gouedard, D. Véron, et al.. Optical spatial smoothing of Nd-glass laser beam. Opt. Commun., 1988, 65: 42-46.

[108] J. Faure, V. Malka, J.-R. Marquès, et al.. Dynamics of Raman instabilities using chirped laser pulses. Phys. Rev. E, 2001, 63: 065401.

[109] B. Afeyan, B. J. Albright, L. Yin. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay. Phys. Rev. Lett., 2014, 113: 045002.

[110] X. Li, J. Park. Theoretical and numerical analysis of superluminescent diodes. J. Lightwave Technol., 2006, 24(6): 2473.

[111] G. A. Alphonse, D. B. Gilbert, M. G. Harvey, et al.. High-power superluminescent diodes. IEEE J. Quantum Electron., 1988, 24(12): 2454-2457.

[112] O. Imafuji, Y. Kouchi, T. Takayama, et al.. 100-mW high-power angled-stripe superluminescent diodes with a new real refractive-index-guided self-aligned structure. IEEE J. Quantum Electron., 1996, 32(11): 1981-1987.

[113] L. Wang, A. M. Weiner. Programmable spectral phase coding of an amplified spontaneous emission light source. Opt. Commun., 1999, 167(1-6): 211-224.

[114] P. Andres, J. Lancis, V. Torres-Company. Arbitrary waveform generator based on all-incoherent pulse shaping. IEEE Photonics Technol. Lett., 2006, 18(24): 2626-2628.

[115] C. Dorrer. Statistical analysis of incoherent pulse shaping. Opt. Express, 2009, 17(5): 3341-3352.

[116] K. Lan, P. Song. Foam Au driven by 4ω − 2ω ignition laser pulse for inertial confinement fusion. Phys. Plasmas, 2017, 24: 052707.

[117] Y.-H. Chen, K. Lan, W. Zheng, et al.. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light. Phys. Plasmas, 2018, 25: 022702.

Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!