Matter and Radiation at Extremes, 2020, 5 (6): 065201, Published Online: Nov. 24, 2020   

Development of low-coherence high-power laser drivers for inertial confinement fusion Download: 554次

Author Affiliations
1 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
2 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
3 School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Figures & Tables

Fig. 1. SHG with two type II crystals in quadrature.

下载图片 查看原文

Fig. 2. Broadband frequency tripling with two triplers for the OMEGA facility.

下载图片 查看原文

Fig. 3. Phase-matching curve for frequency tripling of chirp pulses. Reprinted with permission from Raoult et al., Opt. Lett. 24(5), 354-356 (1999). Copyright 1999 Optical Society of America.

下载图片 查看原文

Fig. 4. Focal spot reshaping using a phase element.

下载图片 查看原文

Fig. 5. Schematic of the ISI method. Reprinted with permission from Zhao et al., Appl. Opt. 58(8), 2121–2126 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 6. (a) Demonstration of the echelon-free ISI method. Reprinted with permission from Lehmberg et al., J. Appl. Phys. 62(7), 2680–2701 (1987). Copyright 1987 AIP Publishing LLC. (b) Spatial mode dispersion in the optical fiber smoothing method. Reprinted with permission from Veron et al., Opt. Commun. 65, 42–46 (1988). Copyright 1988 Elsevier.

下载图片 查看原文

Fig. 7. Optical frequency as a function of time for different light sources: (a1) high-coherence pulse; (b1) chirped pulse and transform-limited pulse; (c1) phase-modulated pulse; (d1) instantaneous broadband pulse. (a2), (b2), (c2), and (d2) are the corresponding frequency–phase diagrams.

下载图片 查看原文

Fig. 8. Schematic of the low-coherence front-end system. AWG, arbitrary waveform generator; AM, amplitude modulator; OC, optical circulator; SM LD, single-mode laser diode; WDM, wavelength division multiplexer; AOM, acoustic optical modulator; FC, fiber collimator; M, mirror; HWP, half-wave plate; P, polarizer; BC, birefringent crystal; MMLD, multimode laser diode. Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.

下载图片 查看原文

Fig. 9. Illustration of the pulse shapes that can be generated by our system: (a) square pulse; (b) high-contrast pulse; (c) exponential pulse; (d) spectra of different pulse shapes. Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.

下载图片 查看原文

Fig. 10. (a) Spectrum without spectral control. (b) Spectrum with a nearly flat top. (c) Saddle-type spectrum for a Nd:glass amplifier. (d) Temporal profiles of the spectra in (a)–(c). Reprinted with permission from Rao et al., Opt. Laser Technol. 122, 105850 (2020). Copyright 2020 Elsevier.

下载图片 查看原文

Fig. 11. Schematic of the high-gain preamplifier: FE, front end; RA, repetitive amplifier; SA, single-shot amplifier; FA, fiber amplifier; HWP, half-wave plate; FR, Faraday rotator; PC, Pockels cell; PBS, polarizing beam splitter; BF, birefringent filter; P, polarizer; M, mirror; BE, beam expander; LCSM, liquid crystal spatial modulator; PSF, spatial filter; Φ, Nd:glass rod (diameter, mm); EOS, electro-optical switch. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 12. (a) Temporal and (b) spectral profiles of the light in the single-shot amplifier. The “sa” label indicates the saddle-shaped spectrum. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 13. Visibility of interference fringes at different locations. The dots are experimental results, and the curves are fitting results. FE, front end, RA, repetitive amplifier, SA, single-shot amplifier. Reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 14. Schematic layout of the main amplifier. SF, spatial filter, M, mirror, L, lens.

下载图片 查看原文

Fig. 15. Spectra of preamplifier and main amplifier.

下载图片 查看原文

Fig. 16. (a) Temporal profile and (b) output energy of main amplifier.

下载图片 查看原文

Fig. 17. (a) Near-field pattern and (b) far-field profile in the main amplifier section.

下载图片 查看原文

Fig. 18. Results of SHG in the low-coherence laser facility. Reprinted with permission from Ji et al., Opt. Lett. 44(17), 4359–4362 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 19. Near fields of the fundamental wave (a) and the second harmonic (b), and the corresponding far fields of the fundamental wave (c) and the second harmonic (d). (a) and (c) are reprinted with permission from Cui et al., Opt. Lett. 44(11), 2859–2862 (2019). Copyright 2019 Optical Society of America. (b) and (d) are reprinted with permission from Ji et al., Opt. Lett. 44(17), 4359–4362 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 20. Experimental and simulation results for second-harmonic efficiency vs fundamental wave energy when a KDP crystal is used.

下载图片 查看原文

Fig. 21. Temporal intensity distribution of second-harmonic conversion measured by a streak camera with a resolution of 11 ps.

下载图片 查看原文

Fig. 22. Schematic of ISI + LA method.

下载图片 查看原文

Fig. 23. Focal spots obtained using ISI + LA with smoothing times (a) T = τ, (b) T = 10τ, (c) T = 100τ, and (d) T = 1000τ. (e)–(h) show the corresponding x-axis intensity distributions. Reprinted with permission from Zhao et al., Appl. Opt. 58(8), 2121–2126 (2019). Copyright 2019 Optical Society of America.

下载图片 查看原文

Fig. 24. (a) Experimental focal spot using partial ISI + LA with broadband light. (b) Theoretical result. Reprinted with permission from Li et al., Appl. Opt. 59(10), 2976–2982 (2020). Copyright 2020 Optical Society of America.

下载图片 查看原文

Fig. 25. (a) Phase distribution of a CPP for a 200 µm circular spot. (b) Corresponding simulated focal spot using the CPP with 10 × 10 ISI.

下载图片 查看原文

Yanqi Gao, Yong Cui, Lailin Ji, Daxing Rao, Xiaohui Zhao, Fujian Li, Dong Liu, Wei Feng, Lan Xia, Jiani Liu, Haitao Shi, Pengyuan Du, Jia Liu, Xiaoli Li, Tao Wang, Tianxiong Zhang, Chong Shan, Yilin Hua, Weixin Ma, Xun Sun, Xianfeng Chen, Xiuguang Huang, Jian Zhu, Wenbing Pei, Zhan Sui, Sizu Fu. Development of low-coherence high-power laser drivers for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2020, 5(6): 065201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!