电光与控制, 2017, 24 (5): 77, 网络出版: 2021-01-25  

无人机机翼悬臂梁结构损伤检测影响因素研究

Influence Factors of Structural Damage Detection of UAV's Wing Cantilever Beam
作者单位
军械工程学院无人机工程系,石家庄 050003
摘要
为了对含多处损伤的悬臂梁结构进行损伤检测定位, 基于模态应变能法, 采用大型有限元软件ABAQUS进行模态分析, 使用其他设备进行模态实验测试, 获得了悬臂梁结构在损伤前后的低阶模态应变能, 并以应变能差值作为损伤指标对其进行损伤识别。仿真和实验结果表明, 利用模态应变能可有效地对含多处损伤的悬臂梁结构进行损伤定位。在方法有效性验证的基础上, 进一步综合分析了实验检测中测点布置、传感器数量、传感器位置以及模态阶数等因素对梁结构损伤检测定位的影响, 研究表明:; 利用前3阶模态即可对含多处损伤的梁结构进行损伤定位, 且测点布置间距与梁宽度相当时定位效果较理想; 此外, 传感器数量对损伤检测定位影响不明显。
Abstract
In order to detect the damage locations of the cantilever beam with multiple damages, modal analysis based on the large commercial finite element software ABAQUS and modal experiment test method were adopted by using modal strain energy method. The low-order modal strain energy before and after damage of a cantilever beam structure was obtained, and the strain energy difference was used as damage index to identify the damage. The simulation and experimental results showed that the modal strain energy can be used to locate the damages of the cantilever beam. Based on the validation of the effectiveness of the method, the influencing factors of the beam structure damage detection were analyzed, including the arrangement of measuring points, the number of sensors, the position of sensors and the number of modal order. The result demonstrated that: 1) The damage location of the beam with multiple damages can be detected by the first three order of modals, and the locating effect is the ideal when the distance between the measuring points is roughly equal to the width of the beam;and 2) The number of sensors has no obvious effect on the damage detection and localization.
参考文献

[1] 赵培仲, 吉伯林, 魏华凯, 等. 飞机战伤抢修研究中的建模仿真简述[J]. 电光与控制, 2014, 21(2): 55-59.

[2] 李桂青, 马斌. 应变模态对梁结构损伤的变化特性研究[J]. 低温建筑技术, 2013(3): 59-61.

[3] 樊爽, 符强, 张学成. 悬臂梁结构损伤检测方法研究[J]. 山西建筑, 2009, 35(14): 62-63.

[4] 刘文光, 李俊, 严铖, 等. 弹性梁损伤识别模态应变能法[J]. 中国机械工程, 2014, 25(12): 1651-1654.

[5] HU H W, WANG B T, LEE C H, et al. Damage detection of surface cracks in composite laminates using modal analysis and strain energy method[J]. Composite Structures, 2006, 74(4): 399-405.

[6] 郭惠勇, 盛懋. 基于模态应变能的不同损伤指标对比[J]. 河海大学学报: 自然科学版, 2014, 42(5): 444-450.

[7] 曹树谦, 张文德, 萧龙翔. 振动结构模态分析: 理论、实验与应用[M]. 2版. 天津: 天津大学出版社, 2014: 111-145.

[8] 王志华, 赵勇刚, 马宏伟. 梁结构中裂纹参数识别方法研究[J]. 计算力学学报, 2006, 23(3): 307-312.

[9] 谢春强, 邹龙庆, 付海龙. 石油钻具损伤检测方法研究与应用[J]. 中国测试, 2011, 37(6): 34-37.

[10] 宫振, 肖宗萍, 杨斌. 基于模态振型的简支梁损伤识别[J]. 湖南工程学院学报: 自然科学版, 2012, 22(4): 65-67.

[11] 李永忠, 朱浩, 吴浪. 基于模态应变能的梁结构损伤识别[J]. 广东建材, 2010(5): 113-115.

[12] 袁立侠, 李大伟, 李霆. 悬臂梁结构损伤诊断的模式识别方法研究[J]. 五邑大学学报: 自然科学版, 2005, 19(1): 35-38.

[13] 王雅瑞, 刘然, 吕智慧, 等. 含不同埋深分层损伤复合材料弯曲破坏声发射监测[J]. 中国测试, 2015, 41(10): 117-120.

[14] 张翌娜, 刘美菊. 梁式结构损伤诊断应变模态理论研究与仿真分析[J]. 黄河水利职业技术学院学报, 2013, 25(3): 25-29.

[15] 吕红明. 边界条件对端梁结构有限元分析影响的研究[J]. 工程设计学报, 2013, 20(4): 321-325.

[16] 顾培英. 基于应变模态技术的结构损伤诊断直接指标法研究[D]. 南京: 河海大学, 2006.

[17] 董广明. 结构损伤全局检测若干方法研究及应用[D]. 上海: 上海交通大学, 2007.

[18] 徐典. 结构损伤识别方法与传感器优化布置研究[D]. 重庆: 重庆大学, 2011.

[19] 宋丽红, 陈殿云, 张传敏. 层合梁自由振动的微分求积分析[J]. 河南科技大学学报: 自然科学版, 2005, 26(2): 89-92.

王龙, 段静波, 路平. 无人机机翼悬臂梁结构损伤检测影响因素研究[J]. 电光与控制, 2017, 24(5): 77. WANG Long, DUAN Jing-bo, LU Ping. Influence Factors of Structural Damage Detection of UAV's Wing Cantilever Beam[J]. Electronics Optics & Control, 2017, 24(5): 77.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!