Journal of Innovative Optical Health Sciences, 2019, 12 (2): 1950008, Published Online: Apr. 16, 2019  

Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue

Author Affiliations
School of Mechatronic Systems Engineering, Simon Fraser University, 250–13450 102nd Avenue, Surrey, Canada, BC V3T 0A3
Abstract
Diffuse optical spectroscopy is a relatively new, noninvasive and nonionizing technique for breast cancer diagnosis. In the present study, we have introduced a novel handheld diffuse optical breast scan (DOB-Scan) probe to measure optical properties of the breast in vivo and create functional and compositional images of the tissue. In addition, the probe gives more information about breast tissue’s constituents, which helps distinguish a healthy and cancerous tissue. Two symmetrical light sources, each including four different wavelengths, are used to illuminate the breast tissue. A high-resolution linear array detector measures the intensity of the back-scattered photons at different radial destinations from the illumination sources on the surface of the breast tissue, and a unique image reconstruction algorithm is used to create four cross-sectional images for four different wavelengths. Different from fiber optic-based illumination techniques, the proposed method in this paper integrates multi-wavelength light-emitting diodes to act as pencil beam sources into a scattering medium like breast tissue. This unique design and its compact structure reduce the complexity, size and cost of a potential probe. Although the introduced technique miniaturizes the probe, this study points to the reliability of this technique in the phantom study and clinical breast imaging. We have received ethical approval to test the DOB-Scan probe on patients and we are currently testing the DOB-Scan probe on subjects who are diagnosed with breast cancer.
References

[1] American Cancer Society, Cancer Facts & Figures (2016).

[2] Canadian Cancer Society, Special Topic?: Predictions of the Future Burden of Cancer in Canada (2016).

[3] L. Tabár and P. B. Dean, “A new era in the diagnosis and treatment of breast cancer,” Breast J. 16(1), S2–S4 (2010).

[4] H. D. Nelson, K. Tyne, A. Naik, C. Bougatsos, B. K. Chan, L. Humphrey, “Screening for breast cancer: Systematic evidence review update for the U. S. preventive services task force,” Ann. Intern. Med. 151(10), 716–726 (2009).

[5] A. Berrington de González, S. Darby, “Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries,” Lancet 363(9406), 345–351 (2004).

[6] C. M. Ronckers, C. A. Erdmann, C. E. Land, “Radiation and breast cancer: A review of current evidence,” Breast Cancer Res. 7(1), 21–32 (2005).

[7] A. Hassan and M. El-shenawee, “Review of electromagnetic techniques for breast cancer detection,” IEEE Rev. Biomed. Eng. 4, 103–118 (2011).

[8] J. Gonzalez, “Hand-held optical imager (Gen-2): Improved instrumentation and target detectability,” J. Biomed. Opt. 17(8), 81402 (2012).

[9] T. Vo-dinh, Biomedical Photonics Handbook, CRC Press (2003).

[10] S. A. Prahl, “Optical properties spectra,” http://omlc.ogi.edu/spectra.

[11] F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).

[12] P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).

[13] D. A. Boas, C. Pitris, N. Ramanujam, Handbook of Biomedical Optics, CRC Press (2011).

[14] T. J. Farrell, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879 (1992).

[15] S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 41302 (2008).

[16] M. L. Flexman, H. K. Kim, R. Stoll, M. A. Khalil, C. J. Fong, A. H. Hielscher, “A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue,” Rev. Sci. Instrum. 83(3), 33108 (2012).

[17] S. K. Biswas, K. Rajan, R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 24702 (2009).

[18] S. J. Erickson, A. Godavarty, S. L. Martinez, J. Gonzalez, A. Romero, M. Roman, A. Nunez, J. Ge, S. Regalado, R. Kiszonas, C. Lopez-Penalver, “Hand-Held Optical Devices for Breast Cancer: Spectroscopy and 3-D Tomographic Imaging,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1298–1312 (2012).

[19] S. J. Erickson and A. Godavarty, “Hand-held based near-infrared optical imaging devices: A review.,” Med. Eng. Phys. 31(5), 495–509 (2009).

[20] K. S. No, Q. Xie, R. Kwong, A. Cerussi, B. J. Tromberg, P. H. Chou, “HBS: A Handheld Breast Cancer detector based on frequency domain photon migration with full heterodyne,” 2006 IEEE Biomed. Circuits Syst. Conf., London, pp. 114–117 (2006).

[21] H. Yang, L. Xi, S. Samuelson, H. Xie, L. Yang, H. Jiang, “Handheld miniature probe integrating diffuse optical tomography with photoacoustic imaging through a MEMS scanning mirror,” Biomed. Opt. Express 4(3), 427–432 (2013).

[22] A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 44005 (2012).

[23] M. Shokoufi, F. Golnaraghi, “Development of a handheld diffuse optical breast cancer assessment probe,” J. Innov. Opt. Health Sci. 9(2), 1–10 (2015).

[24] A. Godavarty, S. Rodriguez, Y.-J. Jung, S. Gonzalez, “Optical imaging for breast cancer prescreening,” Breast Cancer Targets Ther. 2015(7), 193–209 (2015).

[25] Q. Zhu, S. Tannenbaum, S. Kurtzman, “Optical tomography with ultrasound localization for breast cancer diagnosis and treatment monitoring,” Surg. Oncol. Clin. N. Am. 16(2), 307–321 (2007).

[26] T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37(12), 2281–2286 (1992).

[27] V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).

[28] S. Fantini, A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng. 40(2), 398–407 (2012).

[29] R. Berg, S. Andersson-Engels, O. Jarlman, S. Svanbrg, “Time-gated viewing studies on tissue like phantoms,” Appl. Opt. 35(19), 3432–3440 (1996).

[30] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. Van Gemert, “Optical properties of intralipid: A phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).

[31] S. B. Colak, M. B. van der Mark, G. W. t Hooft, J. H. Hoogenraad, E. S. van der Linden, F. a. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1143–1158 (1999).

[32] H. J. van Staveren, C. J. Moes, J. van Marie, S. a Prahl, M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).

[33] “Biomimic Optical Phantoms,” http://www.ino.ca/en/products/.

[34] M. Shokoufi, “Multi — modality breast cancer assessment tools using diffuse optical and electrical impedance spectroscopy,” Simon Fraser University (2016).

Majid Shokoufi, Farid Golnaraghi. Handheld diffuse optical breast scanner probe for cross-sectional imaging of breast tissue[J]. Journal of Innovative Optical Health Sciences, 2019, 12(2): 1950008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!