激光与光电子学进展, 2021, 58 (3): 0300002, 网络出版: 2021-03-12   

水下激光通信系统研究进展 下载: 1783次

Research Progress on Underwater Laser Communication Systems
曾凤娇 1,2,3杨康建 1,2,3晏旭 1,2,3赵孟孟 1,2,3杨平 1,2文良华 1,2,3,4
作者单位
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
4 宜宾学院物理与电子工程学院,四川 宜宾 644600
引用该论文

曾凤娇, 杨康建, 晏旭, 赵孟孟, 杨平, 文良华. 水下激光通信系统研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300002.

Zeng Fengjiao, Yang Kangjian, Yan Xu, Zhao Mengmeng, Yang Ping, Wen Lianghua. Research Progress on Underwater Laser Communication Systems[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300002.

参考文献

[1] Hagen P E, Storkersen N, Vestgard K, et al. The HUGIN 1000 autonomous underwater vehicle for military applications[C]//Oceans 2003, September 22-26, 2003, San Diego, CA, USA. New York: IEEE, 2003: 1141-1145.

    Hagen P E, Storkersen N, Vestgard K, et al. The HUGIN 1000 autonomous underwater vehicle for military applications[C]//Oceans 2003, September 22-26, 2003, San Diego, CA, USA. New York: IEEE, 2003: 1141-1145.

[2] Singh H B, Pal R. Submarine communications[J]. Defence Science Journal, 1993, 43(1): 43-51.

    Singh H B, Pal R. Submarine communications[J]. Defence Science Journal, 1993, 43(1): 43-51.

[3] 徐依航. 美国海军无人潜航器发展经验及未来趋势[J]. 军事文摘, 2018(5): 21-23.

    徐依航. 美国海军无人潜航器发展经验及未来趋势[J]. 军事文摘, 2018(5): 21-23.

    Xu Y H. Development experience and future trend of U.S. Navy's unmanned underwater vehicle[J]. Military Digest, 2018(5): 21-23.

    Xu Y H. Development experience and future trend of U.S. Navy's unmanned underwater vehicle[J]. Military Digest, 2018(5): 21-23.

[4] Sujit P B, Sousa J, Pereira F L. UAV and AUVs coordination for ocean exploration[C]//Oceans 2009-Europe, May11-14, 2009, Bremen, Germany. New York: IEEE, 2009: 1-7.

    Sujit P B, Sousa J, Pereira F L. UAV and AUVs coordination for ocean exploration[C]//Oceans 2009-Europe, May11-14, 2009, Bremen, Germany. New York: IEEE, 2009: 1-7.

[5] Xiang W D, Yang P, Wang S, et al. Underwater image enhancement based on red channel weighted compensation and gamma correction model[J]. Opto-Electronic Advances, 2018, 1(10): 180024.

    Xiang W D, Yang P, Wang S, et al. Underwater image enhancement based on red channel weighted compensation and gamma correction model[J]. Opto-Electronic Advances, 2018, 1(10): 180024.

[6] Akyildiz I F, Pompili D, Melodia T. Challenges for efficient communication in underwater acoustic sensor networks[J]. ACM SIGBED Review, 2004, 1(2): 3-8.

    Akyildiz I F, Pompili D, Melodia T. Challenges for efficient communication in underwater acoustic sensor networks[J]. ACM SIGBED Review, 2004, 1(2): 3-8.

[7] 隋美红. 水下光学无线通信系统的关键技术研究[D]. 青岛: 中国海洋大学, 2009.

    隋美红. 水下光学无线通信系统的关键技术研究[D]. 青岛: 中国海洋大学, 2009.

    Sui M H. The key technology research on underwater wireless optical communication systems[D]. Qingdao: Ocean University of China, 2009.

    Sui M H. The key technology research on underwater wireless optical communication systems[D]. Qingdao: Ocean University of China, 2009.

[8] Paull L, Huang G Q, Seto M, et al. Communication-constrained multi-AUV cooperative SLAM[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), May26-30, 2015, Seattle, WA, USA. New York: IEEE, 2015: 509-516.

    Paull L, Huang G Q, Seto M, et al. Communication-constrained multi-AUV cooperative SLAM[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), May26-30, 2015, Seattle, WA, USA. New York: IEEE, 2015: 509-516.

[9] Kim J, Joe H, Yu S C, et al. Time-delay controller design for position control of autonomous underwater vehicle under disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1052-1061.

    Kim J, Joe H, Yu S C, et al. Time-delay controller design for position control of autonomous underwater vehicle under disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1052-1061.

[10] 张雨凡,李鑫,吕伟超,等. 水下无线光通信链路构成与性能优化进展[J]. 光电工程,2020,47(9): 190734.

    张雨凡,李鑫,吕伟超,等. 水下无线光通信链路构成与性能优化进展[J]. 光电工程,2020,47(9): 190734.

    Zhang Y F, Li X, Lü W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electronic Engineering, 2020, 47(9): 190734.

    Zhang Y F, Li X, Lü W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electronic Engineering, 2020, 47(9): 190734.

[11] 王燕飞, 刘文利, 丁楠, 等. 水下无线光通信简介[J]. 仪表技术, 2018(7): 48-51.

    王燕飞, 刘文利, 丁楠, 等. 水下无线光通信简介[J]. 仪表技术, 2018(7): 48-51.

    Wang Y F, Liu W L, Ding N, et al. Review on underwater wireless optical communication[J]. Instrumentation Technology, 2018(7): 48-51.

    Wang Y F, Liu W L, Ding N, et al. Review on underwater wireless optical communication[J]. Instrumentation Technology, 2018(7): 48-51.

[12] 迟楠, 陈慧. 高速可见光通信的前沿研究进展[J]. 光电工程, 2020, 47(3): 190687.

    迟楠, 陈慧. 高速可见光通信的前沿研究进展[J]. 光电工程, 2020, 47(3): 190687.

    Chi N, Chen H. Progress and prospect of high-speed visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190687.

    Chi N, Chen H. Progress and prospect of high-speed visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190687.

[13] Ghassemlooy Z, Uysal M, Khalighi M A, et al. An overview of optical wireless communications[M]// Uysal M, Capsoni C, Ghassemlooy Z, et al. Optical Wireless Communications. Cham: Springer, 2016: 1-23.

    Ghassemlooy Z, Uysal M, Khalighi M A, et al. An overview of optical wireless communications[M]// Uysal M, Capsoni C, Ghassemlooy Z, et al. Optical Wireless Communications. Cham: Springer, 2016: 1-23.

[14] 何丽萍. 水下非接触式信号双向冗余传输技术研究及应用[D]. 杭州: 浙江大学, 2006.

    何丽萍. 水下非接触式信号双向冗余传输技术研究及应用[D]. 杭州: 浙江大学, 2006.

    He L P. The research and application of technology on underwater wireless redundant communication[D]. Hangzhou: Zhejiang University, 2006.

    He L P. The research and application of technology on underwater wireless redundant communication[D]. Hangzhou: Zhejiang University, 2006.

[15] 迟楠, 王超凡, 李韦萍, 等. 基于蓝绿光LED的水下可见光通信技术研究进展[J]. 复旦学报(自然科学版), 2019, 58(5): 537-548.

    迟楠, 王超凡, 李韦萍, 等. 基于蓝绿光LED的水下可见光通信技术研究进展[J]. 复旦学报(自然科学版), 2019, 58(5): 537-548.

    Chi N, Wang C F, Li W P, et al. Research progress of underwater visible light communication technology based on blue/green LED[J]. Journal of Fudan University (Natural Science), 2019, 58(5): 537-548.

    Chi N, Wang C F, Li W P, et al. Research progress of underwater visible light communication technology based on blue/green LED[J]. Journal of Fudan University (Natural Science), 2019, 58(5): 537-548.

[16] Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277-283.

    Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277-283.

[17] 黎静. 基于解析蒙特卡洛方法的载波调制水下激光通信研究[D]. 武汉: 华中科技大学, 2013.

    黎静. 基于解析蒙特卡洛方法的载波调制水下激光通信研究[D]. 武汉: 华中科技大学, 2013.

    Li J. Research on modulated-carrier underwater wireless laser communications based on analytic Monte Carlo methods[D]. Wuhan: Huazhong University of Science and Technology, 2013.

    Li J. Research on modulated-carrier underwater wireless laser communications based on analytic Monte Carlo methods[D]. Wuhan: Huazhong University of Science and Technology, 2013.

[18] 吴健. 水下无线光通信系统的研究和实现[D]. 厦门:厦门大学, 2014.

    吴健. 水下无线光通信系统的研究和实现[D]. 厦门:厦门大学, 2014.

    Wu J. Research and implementation of underwater wireless optical communication system[D]. Xiamen: Xiamen University, 2014.

    Wu J. Research and implementation of underwater wireless optical communication system[D]. Xiamen: Xiamen University, 2014.

[19] Xu J. Underwater wireless optical communication: why, what, and how? [J]. Chinese Optics Letters, 2019, 17(10): 100007.

    Xu J. Underwater wireless optical communication: why, what, and how? [J]. Chinese Optics Letters, 2019, 17(10): 100007.

[20] 马春波, 王永辉, 敖珺, 等. 水下短距离高速激光通信系统的研究与实现[J]. 光通信技术, 2016, 40(4): 52-55.

    马春波, 王永辉, 敖珺, 等. 水下短距离高速激光通信系统的研究与实现[J]. 光通信技术, 2016, 40(4): 52-55.

    Ma C B, Wang Y H, Ao J, et al. Research and implementation of underwater short-distance high-speed laser communication system[J]. Optical Communication Technology, 2016, 40(4): 52-55.

    Ma C B, Wang Y H, Ao J, et al. Research and implementation of underwater short-distance high-speed laser communication system[J]. Optical Communication Technology, 2016, 40(4): 52-55.

[21] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

    Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

[22] Shimura S, Ichimura S E. Selective transmission of light in the ocean waters and its relation to phytoplankton photosynthesis[J]. Journal of Oceanography, 1973, 29(6): 257-266.

    Shimura S, Ichimura S E. Selective transmission of light in the ocean waters and its relation to phytoplankton photosynthesis[J]. Journal of Oceanography, 1973, 29(6): 257-266.

[23] Bales J W. High bandwidth low power short-range optical communication in underwater [J]. Proceedings of Unmaned Unthethered Submergible Technology, 1995, 9:406-415.

    Bales J W. High bandwidth low power short-range optical communication in underwater [J]. Proceedings of Unmaned Unthethered Submergible Technology, 1995, 9:406-415.

[24] Wiener T, Karp S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607.

    Wiener T, Karp S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607.

[25] Tivey M, Fucile P, Sichel E. A low power, low cost, underwater optical communication system[J]. Ridge 2000 Events, 2004, 2(1): 1-32.

    Tivey M, Fucile P, Sichel E. A low power, low cost, underwater optical communication system[J]. Ridge 2000 Events, 2004, 2(1): 1-32.

[26] 徐啟阳. 蓝绿激光雷达海洋探测[M]. 北京: 国防工业出版社, 2002.

    徐啟阳. 蓝绿激光雷达海洋探测[M]. 北京: 国防工业出版社, 2002.

    Xu Q Y. Blue-green lidar ocean survey[M]. Beijing: National Defense Industry Press, 2002.

    Xu Q Y. Blue-green lidar ocean survey[M]. Beijing: National Defense Industry Press, 2002.

[27] MediaPhotonics. Undersea optical communication[EB/OL].(2010-02-26)[2020-04-01]. https://www.photonics.com/Article.aspx?AID=41211.

    MediaPhotonics. Undersea optical communication[EB/OL].(2010-02-26)[2020-04-01]. https://www.photonics.com/Article.aspx?AID=41211.

[28] 沈鹏,杨磊,陈云赛. 水下激光通信技术的特点及发展现状[J]. 中国设备工程, 2018(4): 214-215.

    沈鹏,杨磊,陈云赛. 水下激光通信技术的特点及发展现状[J]. 中国设备工程, 2018(4): 214-215.

    Shen P, Yang L, Chen Y S. Characteristics and development status of underwater laser communication technology[J]. China Plant Engineering, 2018 (4): 214-215.

    Shen P, Yang L, Chen Y S. Characteristics and development status of underwater laser communication technology[J]. China Plant Engineering, 2018 (4): 214-215.

[29] Campagnaro F, Favaro F, Guerra F, et al. Simulation of multimodal optical and acoustic communications in underwater networks[C]//OCEANS 2015, May 18-21,2015,Genoa, Italy. New York: IEEE, 2015: 15473725.

    Campagnaro F, Favaro F, Guerra F, et al. Simulation of multimodal optical and acoustic communications in underwater networks[C]//OCEANS 2015, May 18-21,2015,Genoa, Italy. New York: IEEE, 2015: 15473725.

[30] Oubei H M, Li C P, Park K H, et al. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode[J]. Optics Express, 2015, 23(16): 20743-20748.

    Oubei H M, Li C P, Park K H, et al. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode[J]. Optics Express, 2015, 23(16): 20743-20748.

[31] Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.

    Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.

[32] 杨坤, 杜度. 国外对潜通信技术发展研究[J]. 舰船科学技术, 2018, 40(2): 153-157.

    杨坤, 杜度. 国外对潜通信技术发展研究[J]. 舰船科学技术, 2018, 40(2): 153-157.

    Yang K, Du D. Research on the development of foreign submarine communication technology[J]. Ship Science and Technology, 2018, 40(2): 153-157.

    Yang K, Du D. Research on the development of foreign submarine communication technology[J]. Ship Science and Technology, 2018, 40(2): 153-157.

[33] 李宏升, 岳军, 金久才, 等. 蓝绿激光水下通信技术综述[J]. 遥测遥控, 2015, 36(5): 16-22.

    李宏升, 岳军, 金久才, 等. 蓝绿激光水下通信技术综述[J]. 遥测遥控, 2015, 36(5): 16-22.

    Li H S, Yue J, Jin J C, et al. Review of the underwater communication technology using blue-green laser[J]. Journal of Telemetry,Tracking and Command, 2015, 36(5): 16-22.

    Li H S, Yue J, Jin J C, et al. Review of the underwater communication technology using blue-green laser[J]. Journal of Telemetry,Tracking and Command, 2015, 36(5): 16-22.

[34] 张军, 蔡文郁, 温端强. 水下高速激光通信系统及组网技术研究[J]. 电子技术应用, 2017, 43(9): 53-56, 60.

    张军, 蔡文郁, 温端强. 水下高速激光通信系统及组网技术研究[J]. 电子技术应用, 2017, 43(9): 53-56, 60.

    Zhang J, Cai W Y, Wen D Q. Research on technology of underwater high speed laser communication system and networking[J]. Application of Electronic Technique, 2017, 43(9): 53-56, 60.

    Zhang J, Cai W Y, Wen D Q. Research on technology of underwater high speed laser communication system and networking[J]. Application of Electronic Technique, 2017, 43(9): 53-56, 60.

[35] 胡鑫. 蓝绿激光水下传输特性仿真及实验研究[D]. 南京: 南京理工大学, 2016.

    胡鑫. 蓝绿激光水下传输特性仿真及实验研究[D]. 南京: 南京理工大学, 2016.

    Hu X. Simulation and experimental study on underwater transmission characteristics of blue-green laser[D]. Nanjing: Nanjing University of Science and Technology, 2016.

    Hu X. Simulation and experimental study on underwater transmission characteristics of blue-green laser[D]. Nanjing: Nanjing University of Science and Technology, 2016.

[36] 叶吻.蓝绿激光水下通信技术研究[J]. 通讯世界, 2018(1): 1-2.

    叶吻.蓝绿激光水下通信技术研究[J]. 通讯世界, 2018(1): 1-2.

    Ye W. Research on blue green laser underwater communication technology[J]. Telecom World, 2018 (1): 1-2.

    Ye W. Research on blue green laser underwater communication technology[J]. Telecom World, 2018 (1): 1-2.

[37] 何宁, 李海玲, 张德琨, 等. 水下激光通信中信号的分集接收[J]. 激光与红外, 2002, 32(4): 228-229.

    何宁, 李海玲, 张德琨, 等. 水下激光通信中信号的分集接收[J]. 激光与红外, 2002, 32(4): 228-229.

    He N, Li H L, Zhang D K, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228-229.

    He N, Li H L, Zhang D K, et al. The multiple diversity reception of signal under water in laser communication[J]. Laser & Infrared, 2002, 32(4): 228-229.

[38] 温端强. 水下高速蓝绿激光通信系统及组网技术研究[D]. 杭州: 杭州电子科技大学, 2017.

    温端强. 水下高速蓝绿激光通信系统及组网技术研究[D]. 杭州: 杭州电子科技大学, 2017.

    Wen D Q. Research of underwater high speed blue-green laser communication system and networking technology[D]. Hangzhou: Hangzhou Dianzi University, 2017.

    Wen D Q. Research of underwater high speed blue-green laser communication system and networking technology[D]. Hangzhou: Hangzhou Dianzi University, 2017.

[39] Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087-3097.

    Kong M, Chen Y, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087-3097.

[40] Li C, Tsai W. A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser[J]. Laser Physics, 2018, 28(2): 025202.

    Li C, Tsai W. A UWOC system based on a 6 m/5.2 Gbps 680 nm vertical-cavity surface-emitting laser[J]. Laser Physics, 2018, 28(2): 025202.

[41] Hong X J, Fei C, Zhang G W, et al. Probabilistically shaped 256-QAM-OFDM transmission in underwater wireless optical communication system[C]//2019 Optical Fiber Communications Conference and Exhibition (OFC), March3-7, 2019,San Diego, California,USA . New York: IEEE, 2019: 18618779.

    Hong X J, Fei C, Zhang G W, et al. Probabilistically shaped 256-QAM-OFDM transmission in underwater wireless optical communication system[C]//2019 Optical Fiber Communications Conference and Exhibition (OFC), March3-7, 2019,San Diego, California,USA . New York: IEEE, 2019: 18618779.

[42] C.: OSA, 2019: SM2G.6.

    C.: OSA, 2019: SM2G.6.

    Lu C H, Wang J M, Li S B, et al. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]// CLEO: Science and Innovations 2019, May 5-10, 2019,San Jose, California, United States. Washington, D.

    Lu C H, Wang J M, Li S B, et al. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]// CLEO: Science and Innovations 2019, May 5-10, 2019,San Jose, California, United States. Washington, D.

[43] Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.

    Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.

[44] Wang P L, Li C, Xu Z Y. A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization[J]. Journal of Lightwave Technology, 2018, 36(13): 2627-2637.

    Wang P L, Li C, Xu Z Y. A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization[J]. Journal of Lightwave Technology, 2018, 36(13): 2627-2637.

[45] Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 2019, 94: 101935.

    Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 2019, 94: 101935.

[46] 王涛, 韩彪, 史魁, 等. 基于全内反射透镜二次配光的水下LED通信研究[J]. 光学学报, 2019, 39(8): 0806001.

    王涛, 韩彪, 史魁, 等. 基于全内反射透镜二次配光的水下LED通信研究[J]. 光学学报, 2019, 39(8): 0806001.

    Wang T, Han B, Shi K, et al. Underwater LED communication based on secondary light distribution with total internal reflection lens[J]. Acta Optica Sinica, 2019, 39(8): 0806001.

    Wang T, Han B, Shi K, et al. Underwater LED communication based on secondary light distribution with total internal reflection lens[J]. Acta Optica Sinica, 2019, 39(8): 0806001.

[47] Watson S, Tan M M, Najda S P, et al. Visible light communications using a directly modulated 422 nm GaN laser diode[J]. Optics Letters, 2013, 38(19): 3792-3794.

    Watson S, Tan M M, Najda S P, et al. Visible light communications using a directly modulated 422 nm GaN laser diode[J]. Optics Letters, 2013, 38(19): 3792-3794.

[48] Liu X Y, Yi S Y, Zhou X L, et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting[J]. Optics Express, 2018, 26(15): 19259-19274.

    Liu X Y, Yi S Y, Zhou X L, et al. Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting[J]. Optics Express, 2018, 26(15): 19259-19274.

[49] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends [J]. Chinese Optics Letters, 2019, 17(10): 100002.

    Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends [J]. Chinese Optics Letters, 2019, 17(10): 100002.

[50] 孔美巍. 水下无线光通信系统的设计与实验研究[D]. 杭州: 浙江大学, 2018.

    孔美巍. 水下无线光通信系统的设计与实验研究[D]. 杭州: 浙江大学, 2018.

    Kong M W. Design and experimental study of underwater wireless optical communication systems[D]. Hangzhou: Zhejiang University, 2018.

    Kong M W. Design and experimental study of underwater wireless optical communication systems[D]. Hangzhou: Zhejiang University, 2018.

[51] Gabriel C, Khalighi M A, Bourennane S, et al. Investigation of suitable modulation techniques for underwater wireless optical communication[C]//2012 International Workshop on Optical Wireless Communications (IWOW), October22-22, 2012, Pisa, ltaly. New York: IEEE, 2012: 13116994 .

    Gabriel C, Khalighi M A, Bourennane S, et al. Investigation of suitable modulation techniques for underwater wireless optical communication[C]//2012 International Workshop on Optical Wireless Communications (IWOW), October22-22, 2012, Pisa, ltaly. New York: IEEE, 2012: 13116994 .

[52] Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547.

    Kaushal H, Kaddoum G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4: 1518-1547.

[53] Fan Y Y, Green R J. Comparison of pulse position modulation and pulse width modulation for application in optical communications [J]. Optical Engineering, 2007, 46(6): 065001.

    Fan Y Y, Green R J. Comparison of pulse position modulation and pulse width modulation for application in optical communications [J]. Optical Engineering, 2007, 46(6): 065001.

[54] Cochenour B, Mullen L, Laux A. Phase coherent digital communications for wireless optical links in turbid underwater environments[C]//Oceans 2007, September 29 - October 4, 2007, Vancouver, BC, Canada. New York: IEEE, 2007: 9854052.

    Cochenour B, Mullen L, Laux A. Phase coherent digital communications for wireless optical links in turbid underwater environments[C]//Oceans 2007, September 29 - October 4, 2007, Vancouver, BC, Canada. New York: IEEE, 2007: 9854052.

[55] Alipour A, Mir A. On the performance of blue-green waves propagation through underwater optical wireless communication system[J]. Photonic Network Communications, 2018, 36(3): 309-315.

    Alipour A, Mir A. On the performance of blue-green waves propagation through underwater optical wireless communication system[J]. Photonic Network Communications, 2018, 36(3): 309-315.

[56] Khalighi M A, Murat. Survey on free space optical communication: a communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2231-2258.

    Khalighi M A, Murat. Survey on free space optical communication: a communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2231-2258.

[57] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 1-11.

    Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 1-11.

[58] Chen D M, Li C, Xu Z Y, et al. Experimental characterization of variable background light to APD-based OWC system performance[C]//2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 29 - August3, 2018, Hong Kong, China. New York: IEEE, 2018: 18635017.

    Chen D M, Li C, Xu Z Y, et al. Experimental characterization of variable background light to APD-based OWC system performance[C]//2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 29 - August3, 2018, Hong Kong, China. New York: IEEE, 2018: 18635017.

[59] 王菲, 杨祎, 段作梁, 等. 基于可见光的水下激光传输信道的特性分析[J]. 光通信技术, 2016, 40(3): 26-28.

    王菲, 杨祎, 段作梁, 等. 基于可见光的水下激光传输信道的特性分析[J]. 光通信技术, 2016, 40(3): 26-28.

    Wang F, Yang Y, Duan Z L, et al. Characteristic analysis of underwater laser signal transmission channel based on visible light[J]. Optical Communication Technology, 2016, 40(3): 26-28.

    Wang F, Yang Y, Duan Z L, et al. Characteristic analysis of underwater laser signal transmission channel based on visible light[J]. Optical Communication Technology, 2016, 40(3): 26-28.

[60] Tse D, Viswanath P. Fundamentals of wireless communication[M]. Cambridge: Cambridge University Press, 2005.

    Tse D, Viswanath P. Fundamentals of wireless communication[M]. Cambridge: Cambridge University Press, 2005.

[61] Hu S Q, Mi L, Zhou T, et al. Viterbi equalization for long-distance, high-speed underwater laser communication[J]. Optical Engineering, 2017, 56(7): 076101.

    Hu S Q, Mi L, Zhou T, et al. Viterbi equalization for long-distance, high-speed underwater laser communication[J]. Optical Engineering, 2017, 56(7): 076101.

[62] Fei C, Hong X, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069.

    Fei C, Hong X, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060-34069.

[63] Snow J B, Flatley J P, Freeman D E, et al. Underwater propagation of high-data-rate laser communications pulsess[J]. Proceedings of SPIE , 1992, 1750: 419-427.

    Snow J B, Flatley J P, Freeman D E, et al. Underwater propagation of high-data-rate laser communications pulsess[J]. Proceedings of SPIE , 1992, 1750: 419-427.

[64] Li C, Lu H, Huang Y C, et al. 50 Gb/s PAM4 underwater wireless optical communication systems across the water-air-water interface [J]. Chinese Optics Letters, 2019, 17(10): 100004.

    Li C, Lu H, Huang Y C, et al. 50 Gb/s PAM4 underwater wireless optical communication systems across the water-air-water interface [J]. Chinese Optics Letters, 2019, 17(10): 100004.

[65] 关云静, 贺锋涛, 杨祎, 等. 基于蒙特卡洛海洋水下激光通信信道特性分析[J]. 光通信技术, 2016, 40(12): 52-54.

    关云静, 贺锋涛, 杨祎, 等. 基于蒙特卡洛海洋水下激光通信信道特性分析[J]. 光通信技术, 2016, 40(12): 52-54.

    Guan Y J, He F T, Yang Y, et al. Channel characteristics analysis of ocean underwater laser communication based on Monte Carlo[J]. Optical Communication Technology, 2016, 40(12): 52-54.

    Guan Y J, He F T, Yang Y, et al. Channel characteristics analysis of ocean underwater laser communication based on Monte Carlo[J]. Optical Communication Technology, 2016, 40(12): 52-54.

[66] 周龙杰, 周东, 曾文兵. 基于平顶光束的水下无线光通信系统的仿真分析[J]. 激光与光电子学进展, 2018, 55(7): 070603.

    周龙杰, 周东, 曾文兵. 基于平顶光束的水下无线光通信系统的仿真分析[J]. 激光与光电子学进展, 2018, 55(7): 070603.

    Zhou L J, Zhou D, Zeng W B. Simulation analysis of undersea wireless optical communication system based on flat-topped beam[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070603.

    Zhou L J, Zhou D, Zeng W B. Simulation analysis of undersea wireless optical communication system based on flat-topped beam[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070603.

[67] 李天松, 阳荣凯, 黄艳虎, 等. 水下激光脉冲时延特性的仿真分析[J]. 激光与光电子学进展, 2019, 56(11): 110102.

    李天松, 阳荣凯, 黄艳虎, 等. 水下激光脉冲时延特性的仿真分析[J]. 激光与光电子学进展, 2019, 56(11): 110102.

    Li T S, Yang R K, Huang Y H, et al. Simulation and analysis of time delay characteristics of underwater laser pulse[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110102.

    Li T S, Yang R K, Huang Y H, et al. Simulation and analysis of time delay characteristics of underwater laser pulse[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110102.

[68] Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

    Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-based channel characterization for underwater optical communication systems[J]. Journal of Optical Communications and Networking, 2013, 5(1): 1-12.

[69] Han B, Wang W, Zheng Y Q, et al. Influence of electro-optical crystal flatness on indirect modulation signal for underwater blue-green laser communication[J]. Proceedings of SPIE, 2019, 11068: 1106823.

    Han B, Wang W, Zheng Y Q, et al. Influence of electro-optical crystal flatness on indirect modulation signal for underwater blue-green laser communication[J]. Proceedings of SPIE, 2019, 11068: 1106823.

[70] Vali Z, Gholami A, Ghassemlooy Z, et al. System parameters effect on the turbulent underwater optical wireless communications link[J]. Optik, 2019, 198: 163153.

    Vali Z, Gholami A, Ghassemlooy Z, et al. System parameters effect on the turbulent underwater optical wireless communications link[J]. Optik, 2019, 198: 163153.

[71] Fu Y Q, Huang C T, Du Y Z. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence[J]. Optics Communications, 2019, 451: 6-12.

    Fu Y Q, Huang C T, Du Y Z. Effect of aperture averaging on mean bit error rate for UWOC system over moderate to strong oceanic turbulence[J]. Optics Communications, 2019, 451: 6-12.

[72] Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273-1278.

    Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273-1278.

[73] 李海燕, 何友金, 任建存. 激光对潜通信仿真系统中纠错码性能研究[J]. 光通信技术, 2010, 34(11): 49-51.

    李海燕, 何友金, 任建存. 激光对潜通信仿真系统中纠错码性能研究[J]. 光通信技术, 2010, 34(11): 49-51.

    Li H Y, He Y J, Ren J C. Research on error-correcting code performance in laser communication with submarine simulative system[J]. Optical Communication Technology, 2010, 34(11): 49-51.

    Li H Y, He Y J, Ren J C. Research on error-correcting code performance in laser communication with submarine simulative system[J]. Optical Communication Technology, 2010, 34(11): 49-51.

[74] 米乐, 胡思奇, 周田华, 等. 基于低密度奇偶校验码和脉冲位置调制的水下长距离光通信系统设计[J]. 中国激光, 2018, 45(10): 1006002.

    米乐, 胡思奇, 周田华, 等. 基于低密度奇偶校验码和脉冲位置调制的水下长距离光通信系统设计[J]. 中国激光, 2018, 45(10): 1006002.

    Mi L, Hu S Q, Zhou T H, et al. Long distance underwater laser communication system based on low-density parity check codes and pulse-position modulation[J]. Chinese Journal of Lasers, 2018, 45(10): 1006002.

    Mi L, Hu S Q, Zhou T H, et al. Long distance underwater laser communication system based on low-density parity check codes and pulse-position modulation[J]. Chinese Journal of Lasers, 2018, 45(10): 1006002.

[75] 杜劲松. 基于LDPC编码与PPM调制的水下光通信研究[D]. 南京: 南京邮电大学, 2017.

    杜劲松. 基于LDPC编码与PPM调制的水下光通信研究[D]. 南京: 南京邮电大学, 2017.

    Du J S. Research on underwater optical communication based on LDPC and PPM[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017.

    Du J S. Research on underwater optical communication based on LDPC and PPM[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017.

[76] 尚雅文. 基于蓝绿激光的水下实时无线通信技术研究[D]. 北京: 北京邮电大学, 2019.

    尚雅文. 基于蓝绿激光的水下实时无线通信技术研究[D]. 北京: 北京邮电大学, 2019.

    Shang Y W. Research on underwater real-time wireless communication technology based on blue-green laser[D]. Beijing: Beijing University of Posts and Telecom, 2019.

    Shang Y W. Research on underwater real-time wireless communication technology based on blue-green laser[D]. Beijing: Beijing University of Posts and Telecom, 2019.

[77] 陈青华, 孔祥祎, 刘崇屹. 基于FPGA加密的水下蓝绿激光安全通信装置[J]. 计算机与现代化, 2017(2): 53-56.

    陈青华, 孔祥祎, 刘崇屹. 基于FPGA加密的水下蓝绿激光安全通信装置[J]. 计算机与现代化, 2017(2): 53-56.

    Chen Q H, Kong X Y, Liu C Y. An encrypted communication device of underwater blue-green laser based on FPGA[J]. Computer and Modernization, 2017(2): 53-56.

    Chen Q H, Kong X Y, Liu C Y. An encrypted communication device of underwater blue-green laser based on FPGA[J]. Computer and Modernization, 2017(2): 53-56.

曾凤娇, 杨康建, 晏旭, 赵孟孟, 杨平, 文良华. 水下激光通信系统研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300002. Zeng Fengjiao, Yang Kangjian, Yan Xu, Zhao Mengmeng, Yang Ping, Wen Lianghua. Research Progress on Underwater Laser Communication Systems[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300002.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!