光学学报, 2016, 36 (12): 1227001, 网络出版: 2016-12-14   

经典场辅助下的三原子量子纠缠动力学

Classical-Field-Assisted Three-Atom Quantum Entanglement Dynamics
作者单位
曲阜师范大学山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
摘要
在腔量子电动力学模型中引入经典场驱动原子, 通过设置原子-腔场的频率失谐量与经典场驱动强度的关系, 实现有效Jaynes-Cummings模型到反Jaynes-Cummings模型的转化, 从而达到控制系统动力学过程的目的。分别讨论了三原子Greenberger-Horne-Zeilinger (GHZ)型和W型纠缠态在不同原子-腔场有效相互作用模型下的纠缠动力学行为。结果发现, 在经典场驱动下, 三原子纠缠在动力学过程中可以实现从存在纠缠死亡现象到无纠缠死亡现象的转化, 从而抑制纠缠突然死亡现象的发生。探究了泄漏腔情形下三原子GHZ型和W型纠缠态在演化过程中的纠缠稳健性, 得到了三原子GHZ型和W型纠缠态在动力学过程中纠缠稳健性最强的有效原子-腔场相互作用模型。
Abstract
The atoms are driven by classical field introduced in the cavity quantum electro-dynamic model. By setting the relationship between frequency detuning of atom-cavity field and classical field driven strength, the transformation from the effectively Jaynes-Cummings model to the anti-Jaynes-Cummings model is achieved. The dynamic process of the whole system can be controlled. The entanglement dynamic behaviors of three-atom Greenberger-Horne-Zeilinger (GHZ)-type and W-type entanglement states in different effective atom-cavity field interaction models are discussed. The results show that the three-atom entanglement state in dynamic process can change from entanglement-sudden-death to no-entanglement-sudden-death with the assisting of classical field, so the phenomenon of entanglement-sudden-death can be inhibited. The entanglement robustness of the three-atom GHZ-type and W-type entanglement states in dissipative cavity is explored in the evolutionary process. The effective atom-cavity interaction model of the three-atom GHZ-type and W-type entanglement states are obtained in dynamic process in which the strongest robustness can be acquired.
参考文献

[1] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Lett, 1993, 70(13): 1895-1899.

[2] Einstein A, Podolsk B, Rosen N. Can quantum-mechanical description of physical reality be considered complete [J]. Phys Rev, 1935, 47: 777-780.

[3] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem[J]. Phys Rev Lett, 1992, 68(5): 557-559.

[4] Bennett C H, DiVincenzo D P. Quantum information and computation[J]. Nature, 2000, 404(6775): 247-255.

[5] Yu T, Eberly J H. Sudden death of entanglement[J]. Science, 2009, 323: 598.

[6] Hadzibabic Z, Stock S, Battelier B, et al. Interference of an array of independent Bose-Einstein condensates[J]. Phys Rev Lett, 2004, 93(18): 180403.

[7] Xu J Z, Guo J B, Wen W, et al. Entanglement evolution of three-qubit mixed states in multipartite cavity-reservoir systems[J]. Chin Phys B, 2012, 21(8): 080305.

[8] Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission[J]. Phys Rev Lett, 2004, 93(14): 140404.

[9] Ynac M, Yu T, Eberly J H. Pairwise concurrence dynamics: a four-qubit model[J]. J Phys B, 2007, 40(9): s45-s59.

[10] Cui L, Zhang Y, Man Z, et al. Different entanglement dynamics and transfer behaviors due to dipole-dipole interaction[J]. Chinese Optics Letters, 2012, 10(10): 100202.

[11] 卢道明. 三耦合腔系统双光子过程中的纠缠特性[J]. 光学学报, 2013, 33(1): 0127001.

    Lu Daoming. Entanglement properties of two-photon process in three coupling cavities[J]. Acta Optica Sinica, 2013, 33(1): 0127001.

[12] Almeida M P, de Melo F, Hor-Meyll M, et al. Environment-induced sudden death of entanglement[J]. Science, 2007, 316(5824): 579-582.

[13] Salles A, de Melo F, Almeida M P, et al. Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment[J]. Phys Rev A, 2008, 78(2): 022322.

[14] Xu J S, Li C F, Gong M, et al. Experimental demonstration of photonic entanglement collapse and revival[J]. Phys Rev Lett, 2010, 104(10): 100502.

[15] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proc IEEE, 1963, 51(1): 89-109.

[16] Zhang Y J, Man Z X, Xia Y J. Atomic entanglement sudden death in a strongly driven cavity QED system[J]. J Phys B, 2009, 42(9): 095503.

[17] Feng L J, Zhang Y J, Xia Y J. Dynamics and improvement of quantum correlations in the triple Jaynes-Cummings model[J]. Optics Communications, 2016, 366: 328-334.

[18] Solano E, Agarwal G S, Walther H. Strong-driving-assisted multipartite entanglement in cavity QED[J]. Phys Rev Lett, 2003, 90(2): 027903.

[19] Hashemi R S M, Huber M, Broadbent C J, et al. Genuinely multipartite concurrence of N-qubit X matrices[J]. Phys Rev A, 2012, 86(6): 062303.

[20] An N B, Kim J, Kim K. Entanglement dynamics of three interacting two-level atoms within a common structured environment[J]. Phys Rev A, 2011, 84(2): 022329.

[21] Siomau M, Fritzsche S. Entanglement dynamics of three-qubit states in noisy channels[J]. Eur Phys J D, 2010, 60(2): 397-403.

[22] Weinstein Y S. Entanglement dynamics in three-qubit X states[J]. Phys Rev A, 2010, 82(3): 032326.

[23] An N B, Kim J, Kim K. Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity[J]. Phys Rev A, 2010, 82(3): 032316.

[24] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Phys Rev Lett, 1998, 80(10): 2245-2248.

杨秀丽, 孙童, 张博, 张军鹏, 张英杰. 经典场辅助下的三原子量子纠缠动力学[J]. 光学学报, 2016, 36(12): 1227001. Yang Xiuli, Sun Tong, Zhang Bo, Zhang Junpeng, Zhang Yingjie. Classical-Field-Assisted Three-Atom Quantum Entanglement Dynamics[J]. Acta Optica Sinica, 2016, 36(12): 1227001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!