光子学报, 2019, 48 (9): 0906002, 网络出版: 2019-10-12   

基于游标效应的级联法布里珀罗传感器温度特性

Temperature Characteristics of Cascaded FabryPérot Interferometer Sensors Based on Vernier Effect
作者单位
中国计量大学 光学与电子科技学院, 杭州 310018
摘要
理论和实验研究了基于游标效应的级联法布里珀罗干涉型传感器的温度特性, 该传感器是将一段空芯光纤熔接在两段单模光纤之间制作而成的, 其中空芯光纤的长度与末端单模光纤的长度相近.仿真结果表明:当温度升高时, 传感器的一些反射光谱向长波方向漂移, 而另一些反射光谱向短波方向漂移.分析结果可知, 光谱的移动方向和级联的两个法布里珀罗干涉仪的自由光谱范围的差值有直接关系,在温度升高的情况下, 自由光谱范围差值的正、负决定了传感器的光谱是向长波还是向短波方向漂移.此外, 自由光谱范围差值的大小对传感器灵敏度的高低起决定性作用, 其绝对值越小对应的传感器的灵敏度越高.实验制作了两个温度传感器, 其自由光谱范围之差分别为0.055 nm、-0.456 nm, 对应的温度灵敏度为163.8 pm/℃、-75 pm/℃, 实验结果与仿真结果一致.通过调整空芯光纤和末端单模光纤的长度可进一步提高灵敏度, 从而实现低成本、结构紧凑、高灵敏度的温度传感.
Abstract
Optical fiber Cascaded FabryPerot Interferometers (CFPIs) sensors based on vernier effect were manufactured by splicing a segment of Hollow Core Fiber (HCF) between two segments of Single Mode Fiber (SMF), and its temperature characteristics were investigated theoretically and experimentally. Simulation and experimental results verify the phenomenon exists in CFPIs sensors, the interference spectra of some sensors based on vernier effect shift to longer wavelength while others shift to shorter wavelength when temperature increases. The phenomenon can be interpreted well based on the value D, which is defined as the Free Spectrum Range (FSR) difference of the cascaded FPIs. Under the condition that temperature increases, the positive or negative of D determines that the spectrum shifts towards longer wavelength or shorter wavelength. Besides, the investigation shows that D makes a great influence on temperature sensitivity. The temperature sensitivity improves with D decreasing. The temperature sensitivities of our experimental sensors are 163.8 pm/℃ and -75 pm/℃, which corresponding D are 0.055 nm and -0.456 nm, respectively. By optimizing the length of the HCF and the caudal SMF proportionally, a simple, compact, lowcost and highsensitivity CFPIs temperature sensor would be achieved.
参考文献

[1] ZHANG Zhiguo, SHEN Chunyan, LI Luming. Temperatureindependent fiberBragggratingbased atmospheric pressure sensor[J].Optics Communications, 2018,411: 108113,

[2] QIAN Wenwen, CHAN Chichiu, ZHAO Chunliu, et al. Photonic crystal fiber refractive index sensor based on a fiber Bragg grating demodulation[J]. Sensors and Actuators BChemical, 2012, 166: 761765.

[3] ZHANG Shun, DING Li, LIANG Lei. Design and research of FBG dynamic stress sensor[J]. Journal of Wuhan University of Technology, 2015. 37(3): 98102.

[4] ZHENG Zhongming, YU Yongsen, ZHANG Xuanyu, et al. Femtosecond laser inscribed smallperiod longperiod fiber gratings with dualparameter sensing[J]. IEEE Sensors Journal, 2018, 18(3): 11001103.

[5] QI Liang, ZHAO Chunliu, YUAN Jianying, et al. Highly reflective long period fiber grating sensor and its application in refractive index sensing[J]. Sensors and Actuators BChemical, 2014, 193(4): 185189.

[6] XU Ben, ZHAO Chunliu, WANG Dongning, et al. Sagnac interferometer hydrogen sensor based on panda fiber with Ptloaded WO3/SiO2 coating[J]. Optics Letters, 2016, 41(7): 15941597.

[7] ZHAO Chunliu, DING Zhenming, WU Binqing. vernier effect based on optical fiber Sagnac interference loop with two angle shift spliced polarization maintaining fibers and its application on temperature sensor[J]. Optics and Precision Engineering, 2017, 25(9): 22832291.

[8] WU Binqing, ZHAO Chunliu, XU Ben, et al. Optical fiber hydrogen sensor with single Sagnac interferometer loop based on vernier effect[J]. Sensors and Actuators B: Chemical, 2018, 255(3): 30113016.

[9] ZU Peng, XIANG Wanghua, JIN Yongxing. Fabrication of temperatureinsensitive twist sensor using low birefringent photonic crystal fiber based Sagnac interferometer[J]. Acta Photonica Sinica, 2011, 40(9): 14331437.

[10] CHEN Pengcheng, SHU Xuewen, CAO Haoran. Novel compact and lowcost ultraweak FabryPerot interferometer as a highly sensitive refractive index sensor[J]. IEEE Photonics Journal, 2017, 9(5): 110.

[11] LIU Guigen, HOU Weilin, HAN Ming. Unambiguous peak recognition for a silicon FabryPerot interferometric temperature sensor[J]. Journal of Lightwave Technology, 2018, 36(10): 19701978.

[12] QUAN Mingran, TIAN Jiajun, YAO Yong. Ultrahigh sensitivity FabryPerot interferometer gas refractive index fiber sensor based on photonic crystal fiber and vernier effect[J]. Optics Letters, 2015, 40(21): 48914894.

[13] WU Binqing, ZHAO Chunliu, KANG Juan, et al. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin filmcoated spherical end[J]. Optical Fiber Technology, 2017, 34: 9197.

[14] MA Rui, ZHANG Wentao, WANG Zhaogang, et al. Magnetic sensor based on TerfenolD materials and fiber Bragg grating FabryPerot cavity[J]. Acta Photonica Sinica, 2018, 47(3): 0306006.

[15] FU Jianan, GUAN Chunying, ZHU Zheng, et al. Infiber MZ interferometer based on cascaded long period gratings in embeddedcore fiber[J]. IEEE Photonics Technology Letters, 2017, 29(21): 18761879.

[16] YU Xiayuqi , ZHAO Chunliu, WANG Jiahui, et al. Double MachZehnder interferometer temperature sensor based on vernier effect[J]. Optical Communication Technology, 2018(1): 2427.

[17] LI Yina, LIANG Zixin, ZHAO Chunliu, et al. Hightemperature sensor based on peanut flatend reflection structure[J]. Optik  International Journal for Light and Electron Optics, 2017, 148: 293299.

[18] LI Yina, ZHAO Chunliu, XU Ben, et al. Optical cascaded FabryPerot interferometer hydrogen sensor based on vernier effect[J]. Optics Communications, 2018, 414: 166171.

[19] QIAN Wenwen, ZHAO Chunliu, DONG Xinyong, et al. Highsensitivity temperature sensor based on an alcoholfilled photonic crystal fiber loop mirror[J]. Optics Letters, 2011, 36(9): 15481550.

[20] ZHU Jiali, WANG Ming, CHEN Lu, et al. An optical fiber FabryPerot pressure sensor using corrugated diaphragm and angle polished fiber[J]. Optical Fiber Technology, 2017, 34: 4246.

[21] SHI Jia, XU Degang, XU Wei, et al. Humidity sensor based on FabryPerot interferometer and intracavity sensing of fiber laser[J]. Journal of Lightwave Technology, 2017, 35(21): 47894795.

[22] ZHAO Yong, WANG Peng, LIU Xu, et al. Highly sensitive airflow sensor based on FabryPerot interferometer and vernier effect[J]. Journal of Lightwave Technology, 2016, 34(23): 53515356.

[23] XU Zhilin, SUN Qizhen, LI Borui, et al. Highly sensitive refractive index sensor based on cascaded microfiber knots with vernier effect[J]. Optics Express, 2015, 23(5): 66626672.

[24] ZHANG Peng, TANG Ming, GAO Feng, et al. Cascaded fiberoptic FabryPerot interferometers with vernier effect for highly sensitive measurement of axial strain and magnetic field[J]. Optics Express, 2014, 22(16): 1958119588.

[25] YANG Yuqiang, WANG Yongguang, ZHAO Yuxin, et al. Sensitivityenhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity[J]. Optics Express, 2017, 25(26): 33290.

[26] SUN Yan, ZHAO Hong, WANG Zhao. “Double Peak” phenomenon in detection of thin film thickness[J]. Semiconductor Optoelectronics, 2005, 26(4): 356358.

侯乐义, 毛邦宁, 王剑锋, 徐贲, 沈常宇, 赵春柳. 基于游标效应的级联法布里珀罗传感器温度特性[J]. 光子学报, 2019, 48(9): 0906002. HOU Leyi, MAO Bangning, WANG Jianfeng, XU Ben, SHEN Changyu, ZHAO Chunliu. Temperature Characteristics of Cascaded FabryPérot Interferometer Sensors Based on Vernier Effect[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0906002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!