量子电子学报, 2020, 37 (3): 257, 网络出版: 2020-11-06   

手性等离激元超表面圆二向色性光谱传感特性研究

Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface
作者单位
1 焦作师范高等专科学校理工学院, 河南 焦作 454000
2 河南师范大学物理学院, 河南 新乡 453007
3 华北水利水电大学电力学院, 河南 郑州 450045
4 西北工业大学电子信息学院, 陕西 西安 710129
引用该论文

李继武, 王春, 邴丕彬, 蒋海涛. 手性等离激元超表面圆二向色性光谱传感特性研究[J]. 量子电子学报, 2020, 37(3): 257.

LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257.

参考文献

[1] Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

    Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

[2] Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

    Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

[3] Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

    Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

[4] Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

    Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

[5] Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

    Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

[6] Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(1): 12-17 (in Chinese).

    Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(1): 12-17 (in Chinese).

[7] Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

    Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

[8] Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

    Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

[9] Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

    Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

[10] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

    Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

[11] Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

    Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

[12] Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

    Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

[13] Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

    Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

[14] Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

    Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

[15] Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

    Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

[16] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

    Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

[17] Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2016, 3(6): 1639-1644 (in Chinese).

    Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2016, 3(6): 1639-1644 (in Chinese).

[18] Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica (物理学报), 2015, 64(15): 158101 (in Chinese).

    Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica (物理学报), 2015, 64(15): 158101 (in Chinese).

[19] Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology (太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese).

    Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology (太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese).

[20] Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

    Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

[21] Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

    Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

[22] Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

    Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

[23] Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

    Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

[24] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

    Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

[25] Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

    Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

[26] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

    Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

[27] Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

    Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

[28] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

    Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

李继武, 王春, 邴丕彬, 蒋海涛. 手性等离激元超表面圆二向色性光谱传感特性研究[J]. 量子电子学报, 2020, 37(3): 257. LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!