量子电子学报, 2020, 37 (3): 257, 网络出版: 2020-11-06   

手性等离激元超表面圆二向色性光谱传感特性研究

Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface
作者单位
1 焦作师范高等专科学校理工学院, 河南 焦作 454000
2 河南师范大学物理学院, 河南 新乡 453007
3 华北水利水电大学电力学院, 河南 郑州 450045
4 西北工业大学电子信息学院, 陕西 西安 710129
摘要
理论研究了一种手性双层等离激元超表面的圆二向色性光谱传感效应。 通过分析其电磁场的空间分布发现,这种由人工结构增强的手性响应的产生归因于等离激元超表面狭缝的局域 等离激元与两层超表面之间的耦合作用,且这种结构的圆二向色性透射光谱与圆共偏振透射光谱的变化对生化 层折射率的变化具有不同的响应。在合适的结构参数下,圆共偏振透射光谱以及圆二向色性透射光谱传感灵敏 度最大分别能够达到109 nm/RIU、111 nm/RIU。该人工手性结构具备共偏振光谱和圆二向色性光谱传感功能, 在新型生化传感器件领域具有潜在的应用价值。
Abstract
The circular dichroism spectral sensing effect of a chiral double-layer plasmon metasurface is investigated theoretically. By analyzing the spatial distribution of the electromagnetic field in the structure, it can be found that the enhanced chiral resonance response of the artificial structure is due to the local plasmon resonance in the slit and the coupling effect between two metasurfaces, and the circular dichroism transmission spectrum and co-polarized transmission spectrum of this structure respond differently to the refractive index changes of the biochemical layer. Under proper structural parameters, the sensitivity of circular co-polarized spectrum and circular dichroism spectrum can reach 109 nm/RIU and 111 nm/RIU, respectively. It is shown that the artificial chiral structure has the functions of co-polarized spectrum and circular dichroism spectrum sensing, and has potential application value in the field of new biochemical sensor devices.
参考文献

[1] Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

    Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263.

[2] Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

    Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789.

[3] Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

    Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226.

[4] Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

    Urbonas D, Balcytis A, Vakkevicius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658.

[5] Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

    Cscelli E, Sozzi M, Poli F, et al. Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 1(4): 967-972.

[6] Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(1): 12-17 (in Chinese).

    Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2014, 31(1): 12-17 (in Chinese).

[7] Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

    Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202.

[8] Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

    Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675.

[9] Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

    Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279.

[10] Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

    Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336.

[11] Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

    Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382.

[12] Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

    Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115.

[13] Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

    Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410.

[14] Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

    Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424.

[15] Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

    Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151.

[16] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

    Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218.

[17] Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2016, 3(6): 1639-1644 (in Chinese).

    Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2016, 3(6): 1639-1644 (in Chinese).

[18] Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica (物理学报), 2015, 64(15): 158101 (in Chinese).

    Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica (物理学报), 2015, 64(15): 158101 (in Chinese).

[19] Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology (太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese).

    Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology (太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese).

[20] Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

    Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214.

[21] Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

    Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12(4): 2255.

[22] Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

    Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9(3): 507.

[23] Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

    Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779.

[24] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

    Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515.

[25] Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

    Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503.

[26] Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

    Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870.

[27] Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

    Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492.

[28] Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

    Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119.

李继武, 王春, 邴丕彬, 蒋海涛. 手性等离激元超表面圆二向色性光谱传感特性研究[J]. 量子电子学报, 2020, 37(3): 257. LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao. Study on circular dichroism spectral sensing properties of chiral plasmonic metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!