光谱学与光谱分析, 2017, 37 (8): 2389, 网络出版: 2017-08-30   

红外光谱分析技术在浮选过程中的应用研究进展

Progresses in Applications of Infrared Spectral Analysis Technology to Flotation Process
作者单位
1 中南大学化学与化工学院, 湖南 长沙 410083
2 中建材(合肥)粉体科技装备有限公司, 安徽 合肥 230051
3 南昌工学院基础教学部, 江西 南昌 330108
4 中钢集团马鞍山矿山研究院有限公司, 安徽 马鞍山 243000
摘要
随着浮选研究的深入发展, 以捕收剂为核心的浮选药剂作用机理的研究逐渐成为研究焦点。 红外光谱以速度快、 成本低、 无损等特点成为浮选药剂作用机理研究最为重要的手段之一。 首先从文献报道数量和比例说明红外光谱在该研究中的重要地位, 并总结了常见浮选药剂的红外光谱特征, 最后分别阐述了红外光谱在捕收剂、 抑制剂、 活化剂等浮选药剂作用机理中的应用研究进展。 归纳出红外光谱用于判定捕收剂在矿物表面作用三种机制的判据: 如果捕收剂作用后的矿物表面有新的吸收峰, 则捕收剂在矿物表面发生了化学反应; 如果仅有吸收峰的位置发生移动, 并超过测试设备本身误差范围的移动量, 则捕收剂在矿物表面形成的是化学吸附; 排除上述产生的新红外特征吸收峰和红外特征峰的移动, 且通过反复水洗即可清除表面沾染的捕收剂分子, 则捕收剂在矿物表面发生的是物理吸附。 并指出红外光谱在浮选过程中的应用研究存在的两大问题, 一是将捕收剂与矿物表面的化学反应和化学吸附机理混淆; 二是忽视红外光谱仪器吸收峰位移2~4 cm-1背景误差。 展望未来红外光谱在浮选过程中的应用研究应该着眼于多种药剂混合用药在矿物表面作用机理的研究, 该领域内红外光谱的定量分析研究及红外光谱吸收峰位移的背景误差分析等三方面。
Abstract
Along with the development of flotation theories and practices, the mechanism of the interaction between the flotation reagents and minerals has become the focus of current researches. Infrared spectral analysis technology has gained considerable popularity, thus it has became one of the most important research techniques in the field of action mechanism of flotation reagents with the characteristics of high speed, low cost and nondestructive. Firstly, the important status of infrared spectroscopy is introduced in view of the amount and rate of related literature. Then, infrared spectrum characteristics of common flotation reagents are summarized. Finally, progresses in applications of infrared spectral analysis technology to the collector, inhibitor and activator are described respectively. With this basis, infrared spectrum analysis criteria for action mechanisms of collectors on mineral surfaces are proposed. The chemical reaction between mineral and collector happened when the characteristic peaks of new compound can be found on the treated mineral surfaces. If only the positions of the characteristic peaks are shifted, and the displacement of this shift exceeded the background error of instrument, the chemical adsorption can be confirmed. If the characteristic peaks of new compound cannot be found and the positions of the characteristic peaks are not shifted but distilled water could wash the collectors down from the treated mineral surfaces, the physical adsorption must be confirmed. Meanwhile, two problems in this research field are discussed. On the one hand, mechanism of chemical reaction and chemical adsorption are often confused, on the other hand, background error of the infrared spectrum instrument tends to be ignored. Furthermore, the application of infrared spectroscopy in flotation need to be further investigated in three aspects,including the mechanism of mixing flotation reagents, quantitative analysis and error analysis.
参考文献

[1] Filippov L O, Severov V V, Filippova I V. International Journal of Mineral Processing, 2014, 127: 62.

[2] Censoria M, Marcaa F L, Carvalhob M T. Waste Management, 2016, 54: 39.

[3] Roya S, Dattab A, Rehanic S, International Journal of Mineral Processing, 2015, 143: 43.

[4] WANG Yu-tang, LIU Xue-bo, YUE Tian-li, et al(王玉堂, 刘学波, 岳田利, 等). Chemical Journal of Chinese Universities(高等学校化学学报), 2009, 30(9): 1713.

[5] Xia J C, Ni L, Han J, et al. Chemical Engineering and Processing: Process Intensification, 2016, 101: 41.

[6] WANG Dian-zuo(王淀佐). The Principle and Application of Flotation Reagents(浮选药剂作用原理及应用). Being: Metallurgical industry press(北京: 冶金工业出版社), 1982. 9.

[7] ZHU Yu-shuang, ZHU Jian-guang(朱玉霜, 朱建光). The Chemical Principle of Flotation Reagents(浮选药剂的化学原理). Changsha: Central South University of Technology Press(长沙: 中南工业大学出版社), 1996. 12.

[8] Pearse M J. Minerals Engineering, 2005, 18(2): 139.

[9] Salarirad M M, Behnamfard A, Hydrometallurgy, 2011, 109(1-2): 23.

[10] Wang L, Peng Y, Runge K, et al. Minerals Engineering, 2015, 70: 77.

[11] CHU Xiao-li, LU Wan-zhen(褚小力, 陆婉珍). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(10): 2595.

[12] ZHANG Qin, HU Yue-hua, XU Jing, et al(张 芹, 胡岳华, 徐 兢, 等). Nonferrous Metals: Mineral Processing Section(有色金属: 选矿部分), 2006, (1): 34.

[13] ZHANG Qin, HU Yue-hua, XU Jing, et al(张 芹, 胡岳华, 徐 兢, 等). Nonferrous Metals: Mineral Processing Section(有色金属: 选矿部分), 2006, (4): 4.

[14] ZHENG Cui-hong, ZHU Bo-qing, ZHOU Hai-ling, et al(郑翠红, 朱波青, 周海玲, 等). Acta Petrologica et Mineralogica(岩石矿物学), 2013, 32(2): 207.

[15] Liu C, Feng Q M, Zhang G F, et al. Minerals Engineering, 2015, 84: 74.

[16] Wu X Q, Zhu J G. Minerals Engineer, 2006, 19(14): 1410.

[17] Xu H F, Zhong H, Wang S, et al. Minerals Engineering, 2014, 66-68: 173.

[18] Wang R X, Xie M N, Wang H J, et al. Korean Journal of Chemical Engineering, 2016, 33(3): 976.

[19] Wang P P, Qin W Q, Ren L Y, et al. Transaction of Nonferrous Metals Society of China, 2013, 23(6): 1789.

[20] Qin W Q, Ren L Y, Xu Y B, et al. Journal of Central South University, 2012, 19(6): 1711.

[21] ZHU Yu-shuang, ZHU Dan(朱玉霜, 朱 丹). Nonferrous Metals(有色金属), 1994, 46(1): 24.

[22] HUANG Jian-ping, ZHONG Hong, QIU Xian-yang, et al(黄建平, 钟 宏, 邱显扬, 等). The Chinese Journal of Nonferrous Metals(中国有色金属学报), 2013, 23(7): 2033.

[23] Liu C M, Feng A S, Guo Z X, et al. International Journal of Mining Science and Technology, 2011, 21(2): 249.

[24] Laitinena O, Hartmanna R, Sirvia J A, et al. Chemical Engineering Science, 2016, 144: 260.

[25] Wang L, Sun W, Liu R Q. Journal of Central South University, 2014, 21: 3596.

[26] Weng X Q, Mei G J, Zhao T T, et al. Separation and Purification Technology, 2013, (103): 187.

[27] Hu Y H, Yang F, Sun W. Minerals Engineering, 2011, 24(1): 82.

[28] ZHANG Zhao, FENG Qi-ming, WANG Wei-qing, et al(张 钊, 冯启明, 王维清, 等). Nonmetallic Mines(非金属学报), 2012, 35(4): 8.

[29] YUAN Lu, ZHONG Hong, LIU Guang-yi, et al(袁 露, 钟 宏, 刘广义, 等). Journal of Central South University·Science and Technology(中南大学学报·自然科学版), 2011, 42(12): 3645.

[30] CHENG Li-li, ZHENG Chun-dao, LI A-lin, et al(程琍琍, 郑春到, 李啊林, 等). Mining and Metallurgical Engineer(矿冶工程), 2014, (4): 39.

[31] Zhu Y K, Sun C Y, Wu W G. Journal of University of Science and Technology Beijing, 2007, 14(1): 9.

[32] DENG Xiao-yang, WANG Wei-hong, GUO Dan-feng, et al(邓晓洋, 王微宏, 郭丹峰, 等). Applied Chemical Industry(应用化工), 2012, 41(10): 1685.

[33] LIU Guang-yi, ZHONG Hong, DI Ning(刘广义, 钟 宏, 狄 宁). Chinese Patent(中国专利). 201110341679.7, 2011.

[34] RAO Jin-shan, HE Xiao-juan, LUO Chuan-sheng, et al(饶金山, 何晓娟, 罗传胜, 等). Journal of the Chinese Society of Rare Earths(中国稀土学报), 2015, 33(3): 370.

[35] Qu X Y, Xiao J J, Liu G Y, Minerals Engineering, 2016, 89: 10.

[36] LONG Tao, FENG Qi-ming, LU Yi-ping, et al(龙 涛, 冯其明, 卢毅屏, 等). The Chinese Journal of Nonferrous Metals(中国有色金属学报), 2011, 21(5): 1145.

[37] Linh T C, Le H, John R, et al. Minerals Engineering, 2008, 21(12-14): 1013.

[38] Li H P, Zhang S S, Jiang H, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(8): 1494.

[39] Pak T H, Sun T C, Kou J, et al. International Journal of Minerals, Metallurgy and Materials, 2012, 19(3): 192.

[40] Potapova E, Grahn M, Holmgren A, et al. Journal of Colloid and Interface Science, 2010, 345: 96.

[41] CAO Yong-dan, CAO Zhao, ZHANG Ya-hui, et al(曹永丹, 曹 钊, 张亚辉, 等). Chinese Journal of Engineering(工程科学学报), 2016, 38(4): 461.

[42] Filippov I V, Filippov L O, Duverger A, et al. Minerals Engineering, 2014, 66-68: 135.

[43] Ge Y Y, Gan S P, Zeng X B, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(2): 449.

许鹏云, 李晶, 陈洲, 叶红齐. 红外光谱分析技术在浮选过程中的应用研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2389. XU Peng-yun, LI Jing, CHEN Zhou, YE Hong-qi. Progresses in Applications of Infrared Spectral Analysis Technology to Flotation Process[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2389.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!