光子学报, 2017, 46 (10): 1014001, 网络出版: 2017-11-24  

LD泵浦碱金属蒸气激光器中弛豫与猝灭的产热分析

Analysis of Heat Source of Relaxation and Quenching in Alkali Vapor Laser Pumped by Laser Diodes
作者单位
周口师范学院 物理与电信工程学院, 河南 周口 466000
摘要
介绍了一个结合速率方程、泵浦光功率和输出激光功率的轴向微分方程以及温度的径向微分方程的碱金属蒸气激光器的物理模型.在充分考虑泵浦光和激光光斑半径的轴向分布以及它们光强的径向分布的基础上, 模型再现了实验测量得到的有激光输出与无激光输出情况下蒸气池内的峰值温度, 对应50 W、220 W和370 W的泵浦光, 在有激光输出情况下的峰值温度分别为346℃、480℃和696℃; 在没有激光输出条件下的峰值温度分别为321℃、414℃和609℃, 总体温度曲线与实验一致.模型计算所得的猝灭的产热量在有激光输出时占总产热量的85%左右, 在无激光输出时则占95%以上, 这是因为猝灭涉及的跃迁能级的能级差较大, 且所占热源区域较宽, 能在更大的范围内产生热量, 因此猝灭在温度计算中非常重要, 不可忽略.
Abstract
A physical model of diode-pumped alkali vapor lasers, which combines the rate equations of population densities, the axial differential equations of pump and laser power, the radial differential equation of temperature, is reported in this paper. Taking into account the measured distributions of the pump and laser beam radii and the hypothetical distributions of the intensities, this model not only reproduces the observed peak temperature of 346℃, 480℃ and 696℃, which respectively correspond to pump powers of 50 W, 220 W and 370 W for the lasing condition, but also reproduces the observed peak temperature of 321℃, 414℃ and 609℃ corresponding to the same pump powers for the non-lasing condition. A wide region of heat source density of quenching is observed. For the lasing condition, quenching contributes approximately 85% of the total heat energy, whereas for the no-lasing condition it occupies over 95%, showing that quenching is very important and non-ignorable in temperature calculation.
参考文献

[1] KRUPKE W, BEACH R, KANZ V,et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338.

[2] EHRENREICH T, ZHDANOV B, TAKEKOSHI T,et al. Diode pumped caesium laser[J]. Electronics Letters, 2005, 41(7): 415-416.

[3] ZHDANOV B, EHRENREICH T, KNIZE R. Highly efficient optically pumped cesium vapor laser[J]. Optics Communication,2006, 260(2): 696-698.

[4] ZHDANOV B, MAES C, EHRENREICH T, et al. Optically pumped potassium laser[J]. Optics Communication,2007, 270(2): 353-355.

[5] ZHDANOV B, ROTONDARO M, SHAFFER M, et al. Efficient potassium diode pumped alkali laser operating in pulsed mode[J].Optics Express, 2014, 22(14): 17266-17270.

[6] BOGACHEV A, GARANIN S, DUDOV A, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electron, 2012, 42(2): 95.

[7] SHAFFER M, LILLY T, ZHDANOV B, et al. In situ non-perturbative temperature measurement in a Cs alkali laser[J].Optics Letters, 2015, 40(1): 119-122.

[8] ZHDANOV B, ROTONDARO M, SHAFFER M, et al. Measurements of the gain medium temperature in an operating Cs DPAL[J].Optics Express, 2016,24(17): 19286-19292.

[9] ZHDANOV B, ROTONDARO M, SHAFFER M, et al. Thermal effects in Cs DPAL and alkali cell window damage[C]. SPIE 2016, 9990: 99900C.

[10] 杨子宁, 王红岩, 陆启生, 等.精细结构混合速率对激光二极管抽运碱金属蒸气激光器性能的影响[J].中国激光, 2010, 37(10): 2502-2507.

    YANG Zi-ning, WANG Hong-yan, LU Qi-sheng, et al. Influence of fine structure mixing rate on laser diode pumped alkali laser[J].Chinese Journal of Lasers, 2010, 37(10): 2502-2507.

[11] YANG Jing, SHEN Bing-lin, QIAN Ai-qing,et al. Thermal effects of high-power side-pumped alkali vapor lasers and the compensation method[J].IEEE Journal of Quantum Electronics, 2014, 50(12): 1029-1034.

[12] HAN Ju-hong, WANG You, CAI He, et al. Investigation of thermal features of two types of alkali-vapor cells pumped by a laser diode[J].Chinese Optics Letters, 2014, 12(s2): 20201.

[13] AUSLENDER I, BARMASHENKO B, ROSENWAKS S, et al. Modeling of pulsed K diode pumped alkali laser: Analysis of the experimental results[J].Optics Express,2015, 23(16): 20986-20996.

[14] WAICHMAN K, BARMASHENKO B, ROSENWAKS S. Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results[J].Journal of the Optical Society of America B, 2014, 31(11): 2628-2637.

[15] SHEN Bing-lin, PAN Bai-liang, JIAO Jian, et al. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers[J].Optics Express, 2015, 23(15): 19500-19511.

[16] 黄伟, 谭荣清, 李志永,等. 铷蒸气激光器3D理论模型的建立及阈值特性模拟[J]. 强激光与粒子束, 2015, 27(1): 61-66.

    HUANG Wei, TAN Rong-qing, LI Zhi-yong, et al.3D model and simulative investigation of the threshold characteristics of diode pumped Rb vapor laser[J].High Power Laser and Particle Beams, 2015, 27(1): 61-66.

[17] 黄伟, 谭荣清, 李志永,等. 连续泵浦准分子宽带泵浦金属激光器泵浦阈值理论研究[J]. 强激光与粒子束, 2015, 27(12): 53-59.

    HUANG Wei, TAN Rong-qing, LI Zhi-yong, et al. Simulative investigation of the threshold characteristics of CW pumped four-level XPAL system[J].High Power Laser and Particle Beams, 2015, 27(12): 53-59.

[18] SHEN Bing-lin, XU Xing-qi, XIA Chun-sheng, et al. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers[J].Optics Communication,2016, 380: 28-34.

[19] SHEN Bing-lin, XU Xing-qi, XIA Chun-sheng, et al. Modeling of the static and flowing-gas ring-LD side-pumped alkali vapor amplifiers[J].Applied Physics B, 2016, 122(7): 1-7.

[20] 蒋志刚, 王浟, 韩聚洪, 等, 种子光线宽影响端面抽运碱金属蒸气放大器的输出特性[J]. 中国激光, 2016, 43(5): 18-24.

    JIANG Zhi-gang, WANG You, HAN Ju-hong, et al. Effects of linewidth of seed-laser on output features of end-pumped alkali vapor amplifier[J].Chinese Journal of Lasers, 2016, 43(5): 18-24.

[21] PITZ G, FOX C, PERRAM G. Transfer between the cesium 62P1/2 and 62P3/2 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6[J].Physical Review A, 2011, 84(3): 032708.

[22] ZISIK M. Heat Conduction[M]. 2nd ed,John Wiley & Sons, Inc., New York, 1993.

[23] LEMMON E, MCLINDEN M, FRIEND D. Thermophysical properties of fluid systems[OL].NIST chemistry webbook, NIST standard reference database, 2005, http: //webbook.nist.gov/chemistry/fluid.

[24] 谢冀江, 徐艳, 陈飞, 等. LD端面泵浦铯蒸气激光器的模式匹配[J]. 光学 精密工程, 2015, 23(10): 2755-2760.

    XIE Ji-jiang, XU Yan, CHEN Fei, et al. Mode matching of LD-end-pumped cesium vapor laser[J]. Optics and Precision Engineering, 2015, 23(10): 2755-2760.

[25] BARMASHENKO B, ROSENWAKS S,WAICHMAN K. Kinetic and fluid dynamic processes in diode pumped alkali lasers: semi-analytical and 2D and 3D CFD modeling[C]. SPIE, 2014, 8962: 89620C.

杨静, 王高亮, 张云丽, 冯亚敏, 理记涛, 罗刘敏. LD泵浦碱金属蒸气激光器中弛豫与猝灭的产热分析[J]. 光子学报, 2017, 46(10): 1014001. YANG Jing, WANG Gao-liang, ZHANG Yun-li, FENG Ya-min, LI Ji-tao, LUO Liu-min. Analysis of Heat Source of Relaxation and Quenching in Alkali Vapor Laser Pumped by Laser Diodes[J]. ACTA PHOTONICA SINICA, 2017, 46(10): 1014001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!