发光学报, 2018, 39 (1): 27, 网络出版: 2018-01-30   

基于稀土上转换纳米荧光探针的肿瘤标志物体外检测

Lanthanide-doped Upconversion Nano-bioprobes for In-vitro Detection of Tumor Markers
作者单位
1 中国科学院 福建物质结构研究所, 中国科学院功能纳米结构设计与组装重点实验室福建省纳米材料重点实验室, 福建 福州 350002
2 福建师范大学 材料科学与工程学院, 福建 福州 350007
摘要
肿瘤标志物的超敏特异性检测对肿瘤患者的早期诊断和治疗以及增加其存活率具有重要的意义。作为新一代的纳米荧光探针, 稀土掺杂上转换纳米晶具有独特的近红外激发的反斯托克斯上转换发光以及长荧光寿命等特征, 被认为是有机染料、稀土螯合物、量子点等传统荧光探针在肿瘤早期诊疗领域最有应用前景的替代者。本文从上转换纳米荧光探针最基础的物理化学性质如控制合成、表面修饰以及发光物理出发, 系统综述了该类材料在肿瘤标志物上转换体外检测方面的最新进展, 并对其未来的发展趋势与努力的方向作了进一步的远景展望。
Abstract
Sensitive and specific biodetection of tumor markers is essential for early-stage cancer diagnosis and therapy, and will ultimately increase the patient survival rate. As a new generation of luminescent nano-bioprobes, trivalent lanthanide (Ln3+)-doped upconversion (UC) nanoparticles (NPs) possess exceptional properties such as near-infrared triggered anti-Stokes luminescence and long excited-state lifetime, and thus are considered to be the most promising alternative to conventional probes such as organic dyes, lanthanide chelates and quantum dots for early cancer theranostics. In this review, we provide a brief overview of the most recent advances in the development of Ln3+-doped UC nano-bioprobes, which covers from their chemical and physical fundamentals to biodetection including the controlled synthesis, surface modification, optical spectroscopy and their in-vitro UC luminescent bioassay of tumor markers. Some future prospects and challenges in this rapidly growing field are finally envisioned.
参考文献

[1] GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015 [J]. The Lancet, 2016, 388:1459-1544.

[2] CHARBONNIERE L J, HILDEBRANDT N, ZIESSEL R F, et al.. Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy [J]. J. Am. Chem. Soc., 2006, 128:12800-12809.

[3] MATSUMOTO K, YUAN J G, WANG G L, et al.. Simultaneous determination of alpha-fetoprotein and carcinoembryonic antigen in human serum by time-resolved fluoroimmunoassay [J]. Anal. Biochem., 1999, 276:81-87.

[4] WU B Y, WANG H F, CHEN J T, et al.. Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles [J]. J. Am. Chem. Soc., 2011, 133:686-688.

[5] BUNZLI J C G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chem. Rev., 2010, 110:2729-2755.

[6] ZHOU V, HAN S, BRINKER A, et al.. A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors [J]. Anal. Biochem., 2004, 331:349-357.

[7] LEQUIN R M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA) [J]. Clin. Chem. 2005, 51:2415-2418.

[8] RISSIN D M, KAN C W, CAMPBELL T G, et al.. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations [J]. Nat. Biotech., 2010, 28:595-599.

[9] CLAPP A R, MEDINTZ I L, MAURO J M, et al.. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors [J]. J. Am. Chem. Soc., 2003, 126:301-310.

[10] MEDINTZ I L, CLAPP A R, BRUNEL F M, et al.. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates [J]. Nat. Mater., 2006, 5:581-589.

[11] GEILER D, STUFLER S, LHMANNSRBEN H G, et al.. Six-color time-resolved Frster resonance energy transfer for ultrasensitive multiplexed biosensing [J]. J. Am. Chem. Soc., 2012, 135:1102-1109.

[12] CHEN Z, ZHENG W, HUANG P, et al.. Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers [J]. Nanoscale, 2015, 7:4274-4290.

[13] LIU Y S, TU D T, ZHU H M, et al.. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications [J]. Chem. Soc. Rev., 2013, 42:6924-6958.

[14] ZHENG W, HUANG P, TU D T, et al.. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection [J]. Chem. Soc. Rev., 2015, 44:1379-1415.

[15] ZHANG P, ROGELJ S, NGUYEN K, et al.. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles [J]. J. Am. Chem. Soc., 2006, 128:12410-12411.

[16] ACHATZ D E, ALI R, WOLFBEIS O S. Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles [J]. Top. Curr. Chem., 2011, 300:29-50.

[17] LIU J L, CHENG J T, ZHANG Y. Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence [J]. Biosens. Bioelectron., 2013, 43:252-256.

[18] ZHAO P, WU Y Y, ZHU Y H, et al.. Upconversion fluorescent strip sensor for rapid determination of vibrio anguillarum [J]. Nanoscale, 2014, 6:3804-3809.

[19] YUAN F, CHEN H Q, XU J, et al.. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin [J]. Chemistry, 2014, 20:2888-2894.

[20] DACOSTA M V, DOUGHAN S, HAN Y, et al.. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review [J]. Anal. Chim. Acta, 2014, 832:1-33.

[21] LU Y Q, ZHAO J B, ZHANG R, et al.. Tunable lifetime multiplexing using luminescent nanocrystals [J]. Nat. Photon., 2014, 8:33-37.

[22] TSANG M K, BAI G X, HAO J H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications [J]. Chem. Soc. Rev., 2015, 44:1585-1607.

[23] YANG P P, GAI S L, LIN J. Functionalized mesoporous silica materials for controlled drug delivery [J]. Chem. Soc. Rev., 2012, 41:3679-3698.

[24] CHENG L, YANG K, LI Y G, et al.. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy [J]. Angew. Chem. Int. Ed., 2011, 50:7385-7390.

[25] ZHOU B, SHI B Y, JIN D Y, et al.. Controlling upconversion nanocrystals for emerging applications [J]. Nat. Nanotechnol., 2015, 10:924-936.

[26] ZHOU J, LIU Q, FENG W, et al.. Upconversion luminescent materials: advances and applications [J]. Chem. Rev., 2015, 115:395-465.

[27] HUANG P, TU D T, ZHENG W, et al.. Inorganic lanthanide nanoprobes for background-free luminescent bioassays [J]. Sci. China Mater., 2015, 58:156-177.

[28] BAST R C, BADGWELL D, LU Z, et al.. New tumor markers: CA125 and beyond [J]. Int. J. Gynecol. Cancer, 2005, 15:274-281.

[29] FOUNDATION M S C. Understanding tumor markers-grades/prognosis [R/OL]. 2015-11-04.http://www.cancer.gov/cancertopics/factsheet/detection/tumor-markers.

[30] DUFFY M J. Tumor markers in clinical practice: a review focusing on common solid cancers [J]. Med. Princip. Practice: Int. J. Kuwait Univ., Health Sci. Centre, 2013, 22:4-11.

[31] STURGEON C M, DUFFY M J, HOFMANN B R, et al.. National academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in liver, bladder, cervical, and gastric cancers [J]. Clin. Chem., 2010, 56:e1-48.

[32] N C Institute. Tumor marker tests [R/OL]. 2014-02-27. http://www.cancer.net/all-about-cancer/cancernet-feature-articles/treatments-tests-and-procedures/understanding-tumor-markers.

[33] NGUYEN M H, KEEFFE E B. Screening for hepatocellular carcinoma [J]. J. Clin. Gastroenterol., 2002, 35:S86-S91.

[34] PONSKY L E, SHARMA S, PANDRANGI L, et al.. Screening and monitoring for bladder cancer: refining the use of NMP22 [J]. J. Urol., 2001, 166:75-78.

[35] DIAMANDIS E. Tumor Markers: Past, Present, and Future. in Tumor Markers: Physiology, Pathobiology, Technology, and Clinical Applications [M]. Washington, DC: AACC Press, 2002:3-8.

[36] LUDWIG J A, WEINSTEIN J N. Biomarkers in cancer staging, prognosis and treatment selection [J]. Nat. Rev. Cancer, 2005, 5:845-856.

[37] ZHANG B H, YANG B H, TANG Z Y. Randomized controlled trial of screening for hepatocellular carcinoma [J]. J. Cancer Res. Clin. Oncol., 2004, 130:417-422.

[38] GEBO K A, CHANDER G, JENCKES M W, et al.. Screening tests for hepatocellular carcinoma in patients with chronic hepatitis C: a systematic review [J]. Hepatology, 2002, 36:S84-S92.

[39] MIZEJEWSKI G J. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants [J]. Experiment. Bio. Med., 2001, 226:377-408.

[40] NGAN H Y, CHEUNG A N, LAUDER I J, et al.. Prognostic significance of serum tumour markers in carcinoma of the cervix [J]. Eur. J. Gynaecolo. Oncol., 1996, 17:512-517.

[41] MAI H X, ZHANG Y W, SI R, et al.. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006, 128:6426-6436.

[42] BOYER J C, VETRONE F, CUCCIA L A, et al.. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem. Soc., 2006, 128:7444-7445.

[43] YI G S, CHOW G M. Synthesis of hexagonal-phase NaYF4∶Yb,Er and NaYF4∶Yb,Tm nanocrystals with efficient up-conversion fluorescence [J]. Adv. Funct. Mater., 2006, 16:2324-2329.

[44] YE X C, COLLINS J E, KANG Y J, et al.. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly [J]. Proc. Natl. Acad. Sci. USA, 2010, 107:22430-22435.

[45] LI Z Q, ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4∶Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence [J]. Nanotechnology, 2008, 19:345606.

[46] WANG F, DENG R, LIU X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes [J]. Nat. Protoc., 2014, 9:1634-1644.

[47] WANG X, ZHUANG J, PENG Q, et al.. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437:121-124.

[48] CHEN D Q, YU Y L, HUANG F, et al.. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping [J]. J. Am. Chem. Soc., 2010, 132:9976-9978.

[49] LI C X, LIN J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application [J]. J. Mater. Chem., 2010, 20:6831-6847.

[50] LI X M, WANG R, ZHANG F, et al.. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency [J]. Nano Lett., 2014, 14:3634-3639.

[51] PATRA A, FRIEND C S, KAPOOR R, et al.. Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites [J]. Chem. Mater., 2003, 15:3650-3655.

[52] PATRA A, FRIEND C S, KAPOOR R, et al.. Upconversion in Er3+∶ZrO2 nanocrystals [J]. J. Phys. Chem. B, 2002, 106:1909-1912.

[53] DONG C H, VAN VEGGEL F C J M. Cation exchange in lanthanide fluoride nanoparticles [J]. ACS Nano, 2009, 3:123-130.

[54] TU D T, LIU Y S, ZHU H M, et al.. Breakdown of crystallographic site symmetry in lanthanide-doped NaYF4 crystals [J]. Angew. Chem. Int. Ed., 2013, 125:1166-1171.

[55] LIU Y S, TU D T, ZHU H M, et al.. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals [J]. Adv. Mater., 2010, 22:3266-3271.

[56] AI Y, TU D T, ZHENG W, et al.. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection [J]. Nanoscale, 2013, 5:6430-6438.

[57] WANG M, CHEN Z, ZHENG W, et al.. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy [J]. Nanoscale, 2014, 6:8274-8282.

[58] HUANG P, ZHENG W, ZHOU S Y, et al.. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers [J]. Angew. Chem. Int. Ed., 2014, 53:1252-1257.

[59] ZOU Q L, HUANG P, ZHENG W, et al.. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles [J]. Nanoscale, 2017, 9:6521-6528.

[60] WANG Y, LIU Y, XIAO Q, et al.. Eu3+ doped KYF4 nanocrystals: synthesis, electronic structure, and optical properties [J]. Nanoscale, 2011, 3:3164-3169.

[61] LIU R, TU D T, LIU Y S, et al.. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals [J]. Nanoscale, 2012, 4:4485-4491.

[62] ZHENG W, ZHOU S Y, CHEN Z, et al.. Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection [J]. Angew. Chem. Int. Ed., 2013, 52:6671-6676.

[63] XU J, ZHOU S Y, TU D T, et al.. Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen [J]. Chem. Sci., 2016, 7:2572-2578.

[64] YANG Y, TU D, ZHENG W, et al.. Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection [J]. Nanoscale, 2014, 6:11098-11105.

[65] ZHUO Z, LIU Y S, LIU D J, et al.. Manipulating energy transfer in lanthanide-doped single nanoparticles for highly enhanced upconverting luminescence [J]. Chem. Sci., 2017, 8:5050-5056.

[66] ZHANG Y H, ZHANG L X, DENG R R, et al.. Multicolor barcoding in a single upconversion crystal [J]. J. Am. Chem. Soc., 2014, 136:4893-4896.

[67] ZHANG T R, GE J P, HU Y P, et al.. A general approach for transferring hydrophobic nanocrystals into water [J]. Nano Lett., 2007, 7:3203-3207.

[68] DONG A G, YE X C, CHEN J, et al.. A Generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals [J]. J. Am. Chem. Soc., 2011, 133:998-1006.

[69] LIU Y, CHEN T, WU C, et al.. Facile surface functionalization of hydrophobic magnetic nanoparticles [J]. J. Am. Chem. Soc., 2014, 136:12552-12555.

[70] CHEN Z G, CHEN H L, HU H, et al.. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. J. Am. Chem. Soc., 2008, 130:3023-3029.

[71] ZHOU H P, XU C H, SUN W, et al.. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications [J]. Adv. Funct. Mater., 2009, 19:3892-3900.

[72] OZIN G A, BOGDAN N, VETRONE F, et al.. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles [J]. Nano Lett., 2011, 11:835-840.

[73] JIANG G C, PICHAANDI J, JOHNSON N J J, et al.. An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications [J]. Langmuir, 2012, 28:3239-3247.

[74] DAS G K, STARK D T, KENNEDY I M. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction [J]. Langmuir, 2014, 30:8167-8176.

[75] WANG L Y, YAN R X, HAO Z Y, et al.. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44:6054-6057.

[76] WANG C, CHENG L, LIU Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics [J]. Theranostics, 2013, 3:317-330.

[77] IDRIS N M, GNANASAMMANDHAN M K, ZHANG J, et al.. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers [J]. Nat. Med., 2012, 18:1580-1585.

[78] LIU J N, BU J W, BU W B, et al.. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging [J]. Angew. Chem. Int. Ed., 2014, 53:4551-4555.

[79] SEDLMEIER A, GORRIS H H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications [J]. Chem. Soc. Rev., 2015, 44:1526-1560.

[80] NAM J, WON N, BANG J, et al.. Surface engineering of inorganic nanoparticles for imaging and therapy [J]. Adv. Drug Deliver. Rev., 2013, 65:622-648.

[81] MEISER F, CORTEZ C, CARUSO F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles [J]. Angew. Chem. Int. Ed., 2004, 43:5954-5957.

[82] ERATHODIYIL N, YING J Y. Functionalization of inorganic nanoparticles for bioimaging applications [J]. Acc. Chem. Res., 2011, 44:925-935.

[83] LI L L, ZHANG R, YIN L, et al.. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes [J]. Angew. Chem. Int. Ed., 2012, 124:6225-6229.

[84] XIA L, KONG X, LIU X, et al.. An upconversion nanoparticle-zinc phthalocyanine based nanophotosensitizer for photodynamic therapy [J]. Biomaterials, 2014, 35:4146-4156.

[85] VOLIANI V, GONZLEZ-BJAR M, HERRANZ-PREZ V, et al.. Orthogonal functionalisation of upconverting NaYF4 nanocrystals [J]. Chem. Eur. J., 2013, 19:13538-13546.

[86] BEYAZIT S, AMBROSINI S, MARCHYK N, et al.. Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources [J]. Angew. Chem. Int. Ed., 2014, 53:8919-8923.

[87] ZHOU S, ZHENG W, CHEN Z, et al.. Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles [J]. Angew. Chem. Int. Ed., 2014, 53:12489-12502.

[88] LI L L, WU P, HWANG K, et al.. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging [J]. J. Am. Chem. Soc., 2013, 135:2411-2414.

[89] ZHOU J, LIU Z, LI F Y. Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev., 2012, 41:1323-1349.

[90] LIU Y S, ZHOU S Y, TU D T, et al.. Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging [J]. J. Am. Chem. Soc., 2012, 134:15083-15090.

[91] HUANG X Y, HAN S Y, HUANG W, et al.. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J]. Chem. Soc. Rev., 2013, 42:173-201.

[92] JOHNSON N J J, HE S, DIAO S, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals [J]. J. Am. Chem. Soc., 2017, 139:3275-3282.

[93] CHEN Q S, XIE X J, HUANG B L, et al.. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping [J]. Angew. Chem. Int. Ed., 2017, 56:7605-7609.

[94] ZHANG F, CHE R C, LI X M, et al.. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties [J]. Nano Lett., 2012, 12:2852-2858.

[95] WANG Y F, SUN L D, XIAO J W, et al.. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage [J]. Chem. Eur. J., 2012, 18:5558-5564.

[96] ZHOU B, TAO L, TSANG Y H, et al.. Core-shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles [J]. J. Mater. Chem. C, 2013, 1:4313-4318.

[97] ZHOU B, TAO L, CHAI Y, et al.. Constructing interfacial energy transfer for photon up- and down-conversion from lanthanides in a core-shell nanostructure [J]. Angew. Chem. Int. Ed., 2016, 128:12544-12548.

[98] DENG R, QIN F, CHEN R, et al.. Temporal full-colour tuning through non-steady-state upconversion [J]. Nat. Nanotech., 2015, 10:237-242.

[99] CHAN E M, HAN G, GOLDBERG J D, et al.. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission [J]. Nano Lett., 2012, 12:3839-3845.

[100] ZHANG Y, HUANG L, LIU X. Unraveling epitaxial habits in the NaLnF4 system for color multiplexing at the single-particle level [J]. Angew. Chem. Int. Ed., 2016, 55:5718-5722.

[101] BOYER J C, VAN VEGGEL F C J M. Absolute quantum yield measurements of colloidal NaYF4∶Er3+, Yb3+ upconverting nanoparticles [J]. Nanoscale, 2010, 2:1417-1419.

[102] HILDEBRANDT N, CHARBONNIERE L J, BECK M, et al.. Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay [J]. Angew. Chem. Int. Ed., 2005, 44:7612-7615.

[103] KUNINGAS K, PAKKILA H, UKONAHO T, et al.. Upconversion fluorescence enables homogeneous immunoassay in whole blood [J]. Clin. Chem., 2007, 53:145-146.

[104] YUAN J L, WANG G L, MAJIMA K, et al.. Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay [J]. Anal. Chem., 2001, 73:1869-1876.

[105] PERFEZOU M, TURNER A, MERKOCI A. Cancer detection using nanoparticle-based sensors [J]. Chem. Soc. Rev., 2012, 41:2606-2622.

[106] SIITARI H, HEMMILA I, SOINI E, et al.. Detection of Hepatitis-B surface-antigen using time-resolved fluoroimmunoassay [J]. Nature, 1983, 301:258-260.

[107] HEMMILA I, DAKUBU S, MUKKALA V M, et al.. Europium as a label in time-resolved immunofluorometric assays [J]. Anal. Biochem., 1984, 137:335-343.

[108] BUNZLI J C G, PIGUET C. Taking advantage of luminescent lanthanide ions [J]. Chem. Soc. Rev., 2005, 34:1048-1077.

[109] WANG J, DENG R, MACDONALD M A, et al.. Enhancing multiphoton upconversion through energy clustering at sublattice level [J]. Nat. Mater., 2014, 13:157-162.

[110] GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10 nm upconverting nanocrystals for single-molecule imaging [J]. Nat. Nanotech., 2014, 9:300-305.

[111] GAI S, LI C, YANG P, et al.. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications [J]. Chem. Rev., 2013, 114:2343-2389.

[112] GORRIS H H, ALI R, SALEH S M, et al.. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding [J]. Adv. Mater., 2011, 23:1652.

[113] HAASE M, SCHAFER H. Upconverting nanoparticles [J]. Angew. Chem. Int. Ed., 2011, 50:5808-5829.

[114] WU S W, HAN G, MILLIRON D J, et al.. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals [J]. Proc. Natl. Acad. Sci. USA, 2009, 106:10917-10921.

[115] CHATTERJEE D K, GNANASAMMANDHAN M K, ZHANG Y. Small upconverting fluorescent nanoparticles for biomedical applications [J]. Small, 2010, 6:2781-2795.

[116] SUN L D, WANG Y F, YAN C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra [J]. Acc. Chem. Res., 2014, 47:1001-1009.

[117] ZHANG F, SHI Q H, ZHANG Y C, et al.. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding [J]. Adv. Mater., 2011, 23:3775-3779.

[118] ZHAO J B, JIN D Y, SCHARTNER E P, et al.. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence [J]. Nat. Nanotechnol., 2013, 8:729-734.

[119] NACZYNSKI D J, TAN M C, ZEVON M, et al.. Rare-earth-doped biological composites as in vivo shortwave infrared reporters [J]. Nat. Commun., 2013, 4:1-10.

[120] LI P, PENG Q, LI Y D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals [J]. Adv. Mater. 2009, 21:1945-1948.

[121] ZIJLMANS H J M A A, BONNET J, BURTON J, et al.. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology [J]. Anal. Biochem., 1999, 267:30-36.

[122] WU S J, DUAN N, WANG Z P, et al.. Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels [J]. Analyst, 2011, 136:2306-2314.

[123] WANG L Y, LI Y D. Green upconversion nanocrystals for DNA detection [J]. Chem. Comm., 2006, 24:2557-2859.

[124] WU Y M, CEN Y, HUANG L J, et al.. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum [J]. Chem. Commun., 2014, 50:4759-4762.

[125] WANG J, WEI T, LI X Y, et al.. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition [J]. Angew. Chem. Int. Ed., 2014, 53:1616-1620.

[126] LIU Y S, TU D T, ZHU H M, et al.. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection [J]. Nanoscale, 2013, 5:1369-1384.

[127] LIU Y S, ZHOU S Y, ZHUO Z, et al.. In vitro upconverting/downshifting luminescent detection of tumor markers based on Eu3+-activated core-shell-shell lanthanide nanoprobes [J]. Chem. Sci., 2016, 7:5013-5019.

[128] WANG Y H, SHEN P, LI C Y, et al.. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood [J]. Anal. Chem., 2012, 84:1466-1473.

[129] CHEN H Q, GUAN Y Y, WANG S Z, et al.. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4∶Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods [J]. Langmuir, 2014, 30:13085-13091.

[130] MORGAN C G, MITCHELL A C. Prospects for applications of lanthanide-based upconverting surfaces to bioassay and detection [J]. Biosens. Bioelectron., 2007, 22:1769-1775.

[131] KUNINGAS K, RANTANEN T, UKONAHO T, et al.. Homogeneous assay technology based on upconverting phosphors [J]. Anal. Chem., 2005, 77:7348-7355.

[132] WANG X D, WOLFBEIS O S, MEIER R J. Luminescent probes and sensors for temperature [J]. Chem. Soc. Rev., 2013, 42:7834-7869.

[133] TU D T, ZHENG W, LIU Y S, et al.. Luminescent biodetection based on lanthanide-doped inorganic nanoprobes [J]. Coord. Chem. Rev., 2014, 273-274:13-29.

[134] LIU Y, CHEN M, CAO T Y, et al.. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury [J]. J. Am. Chem. Soc., 2013, 135:9869-9876.

[135] ZHANG C L, YUAN Y X, ZHANG S M, et al.. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide [J]. Angew. Chem. Int. Ed., 2011, 50:6851-6854.

[136] DENG R R, XIE X J, VENDRELL M, et al.. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles [J]. J. Am. Chem. Soc., 2011, 133:20168-20171.

[137] HE M Y, LIU Z H. Paper-based microfluidic device with upconversion fluorescence assay [J]. Anal. Chem., 2013, 85:11691-11694.

[138] PENG J H, WANG Y H, WANG J L, et al.. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer [J]. Biosens. Bioelectron., 2011, 28:414-420.

[139] YUAN Y X, WU S F, SHU F, et al.. An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing [J]. Chem. Commun., 2014, 50:1095-1097.

[140] WANG Y H, BAO L, LIU Z H, et al.. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma [J]. Anal. Chem., 2011, 83:8130-8137.

[141] WU Z, LI H, LIU Z. An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer [J]. Sens. Actuators B: Chem., 2015, 206:531-537.

[142] LI H, SUN D, LIU Y J, et al.. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer [J]. Biosens. Bioelectron., 2014, 55:149-156.

[143] WANG Y H, WU Z J, LIU Z H. Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor [J]. Anal. Chem., 2013, 85:258-264.

[144] YE W W, TSANG M K, LIU X, et al.. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype [J]. Small, 2014, 10:2390-2397.

[145] CEN Y, WU Y M, KONG X J, et al.. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells [J]. Anal. Chem., 2014, 86:7119-7127.

[146] ZHOU F, NOOR M O, KRULL U J. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors [J]. Anal. Chem., 2014, 86:2719-2726.

于莉华, 刘永升, 陈学元. 基于稀土上转换纳米荧光探针的肿瘤标志物体外检测[J]. 发光学报, 2018, 39(1): 27. YU Li-hua, LIU Yong-sheng, CHEN Xue-yuan. Lanthanide-doped Upconversion Nano-bioprobes for In-vitro Detection of Tumor Markers[J]. Chinese Journal of Luminescence, 2018, 39(1): 27.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!