强激光与粒子束, 2016, 28 (3): 033004, 网络出版: 2016-03-28   

微波输出窗内表面闪络击穿3维全电磁等离子体流体模拟

3D fully electromagnetic field and plasma fluid simulation of inner surface flashover and breakdown on microwave window
作者单位
1 西南交通大学 物理科学与技术学院, 成都 610031
2 北京应用物理与计算数学研究所, 北京100094
摘要
通过建立电磁场等离子体流体耦合物理模型,基于自主研发的3维全电磁粒子模拟大规模并行程序NEPTUNE3D,编制了3维电磁场与等离子流体耦合程序模块,对1.3 GHz高功率微波窗内表面闪络击穿物理过程进行了数值模拟。研究结果表明:微波窗内侧表面形成的等离子体构型与初始种子电子分布形式密切相关。中心点源分布下,等离子体发展为“蘑菇”形状, 输出微波脉冲缩短并不严重,等离子体吸收微波功率大于反射微波功率;面源分布下,等离子体发展为“帽子”形状,输出微波脉冲缩短严重,输出微波完全截断,开始阶段等离子体吸收微波功率占优,待等离子体密度增加到一定程度后,反射微波功率占优。通过降低窗体表面场强、表面释气率及初始种子电子密度等方法,可不同程度地延长输出微波脉冲宽度。窗体表面不同气体层厚度对闪络击穿下的输出微波脉冲宽度影响不大。
Abstract
Based on an independently developed large-scale parallel code NEPTUNE3D, a module of electromagnetic field finite-difference-time-domain method coupled with a plasma fluid model is programmed and built to investigate the physical phenomena of high power microwave (HPM) flashover and breakdown on the inner surface of the output window. By using improved NEPTUNE3D code, the 1.3 GHz HPM flashover and breakdown on the inner surface of the output window are simulated. The numerical results indicate that the plasma shape formed in flashover and breakdown is relevant to the initial seed electron distribution type. For the point source central distribution, the developing plasma configuration is like a mushroom; the shortening of the output microwave caused by plasma absorption is not serious. For the face-source distribution, the developing plasma configuration is like a hat; the shortening of the output microwave is intense, the plasma absorption effect is dominant at the initial stage, while the plasma reflection effect dominates when the plasma density is up to a high enough value. The output microwave pulse width could be prolonged by decreasing the microwave power, the outgassing rate and the initial seed electron density, respectively. The outgassing depth barely affects the width of the shortened microwave output pulse.Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. Hoboken: Wiley-IEEE Press, 2001: 325-375.
参考文献

[1] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds [J]. Physics of Plasmas, 2011, 18: 055702.

[2] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟[J]. 物理学报, 2009, 58(5): 3268-3273.(Cai Libin, Wang Jianguo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, 2009, 58(5): 3268-3273)

[3] 郝西伟, 宋佰鹏, 张冠军, 等. 真空高功率微波介质窗表面击穿破坏现象的研究进展[J]. 强激光与粒子束, 2012, 24(1): 16-23.(Hao Xiwei, Song Baipeng, Zhang Guanjun, et al. Research progress of dielectric window surface breakdown phenomena under HPM in vacuum. High Power Laser and Particle Beams, 2012, 24(1): 16-23)

[4] 张慧博, 杨建华, 程国新, 等. 刻槽结构高功率微波输出窗次级电子倍增效应[J]. 强激光与粒子束, 2013, 25(5): 1189-1194.(Zhang Huibo, Yang Jianhua, Cheng Guoxin, et al. Investigation on multipactor of high-power microwave window with grooves. High Power Laser and Particle Beams, 2013, 25(5): 1189-1194)

[5] 赵朋程, 廖成, 杨丹, 等. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究[J]. 物理学报, 2013, 62: 055101. (Zhao Pengcheng, Liao Cheng, Yang Dan, et al. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62: 055101)

[6] 董烨, 董志伟, 周前红, 等. 释气对介质沿面闪络击穿影响的粒子模拟[J]. 物理学报, 2014, 63: 027901.(Dong Ye, Dong Zhiwei, Zhou Qianhong, et al. Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment. Acta Physica Sinica, 2014, 63: 027901)

[7] Neuber A, Edmiston G, Krile J, et al. Interface breakdown during high-power microwave transmission[J]. IEEE Trans Magnetics, 2007, 43(1): 496-500.

[8] Stephens J, Beeson S, Dickens A, et al. Charged electret deposition for the manipulation of high power microwave flashover delay times [J]. Physics of Plasmas, 2012, 19: 112111.

[9] Ford P, Beeson S, Krompholz H, et al. A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures[J]. Physics of Plasmas, 2012, 19: 073503.

[10] Kim H, Verboncoeur J. Time-dependent physics of a single-surface multipactor discharge[J]. Physics of Plasmas, 2005, 12: 123504.

[11] Kim H, Verboncoeur J. Transition of window breakdown from vacuum multipactor discharge to rf plasma[J]. Physics of Plasmas, 2006, 13: 123506.

[12] Nam S, Verboncoeur J. Effect of electron energy distribution function on the global model for high power microwave breakdown at high pressure[J]. Applied Physics Letter, 2008, 92: 231502.

[13] Nam S, Verboncoeur J. Effect of microwave frequency on breakdown and electron energy distribution function using a global model[J]. Applied Physics Letter, 2008, 93: 151504.

[14] 董烨, 周前红, 杨温渊, 等. 高功率微波窗内外表面闪络击穿流体模拟研究[J]. 物理学报, 2014, 63: 185206. (Dong Ye, Zhou Qianhong, Yang Wenyuan, et al. Numerical investigation on high power microwave flashover and breakdown on inner and outer surface of output-window by EM-fluid simulation. Acta Physica Sinica, 2014, 63: 185206)

[15] Yang Wenyuan, Dong Ye, Chen Jun, et al. Brief introduction and recent applications of a large-scale parallel three-dimensional PIC code named NEPTUNE3D[J]. IEEE Trans Plasma Sci, 2012, 40(7): 1937-1944.

[16] Taflove A, Hagness S. Computational Electrodynamics: The finite-difference time-domain method[M]. 3rd ed. Norwood: Artech House, 2005: 51-105.

[17] Ali A. Nanosecond air breakdown parameters for electron and microwave beam propagation[J]. Laser and Particle Beams, 1988, 6(1): 105-117.

[18] Kourtzanidis K, Boeuf J, Rogier F. Three dimensional simulations of pattern formation during high-pressure freely localized microwave breakdown in air [J]. Physics of Plasmas, 2014, 21: 123513.

董烨, 周前红, 杨温渊, 董志伟, 周海京, 刘庆想. 微波输出窗内表面闪络击穿3维全电磁等离子体流体模拟[J]. 强激光与粒子束, 2016, 28(3): 033004. Dong Ye, Zhou Qianhong, Yang Wenyuan, Dong Zhiwei, Zhou Haijing, Liu Qingxiang. 3D fully electromagnetic field and plasma fluid simulation of inner surface flashover and breakdown on microwave window[J]. High Power Laser and Particle Beams, 2016, 28(3): 033004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!