中国激光, 2017, 44 (7): 0703019, 网络出版: 2017-07-05   

基于介质和石墨烯涂层的古斯-汉欣位移的精确调控 下载: 504次

Precise Control of Goos-Hnchen Shift Based on Dielectric and Graphene Coating
作者单位
湖南理工学院信息与通信工程学院, 湖南 岳阳 414006
引用该论文

高明盛, 罗朝明, 周宏敏, 陈敏, 吴健辉. 基于介质和石墨烯涂层的古斯-汉欣位移的精确调控[J]. 中国激光, 2017, 44(7): 0703019.

Gao Mingsheng, Luo Zhaoming, Zhou Hongmin, Chen Min, Wu Jianhui. Precise Control of Goos-Hnchen Shift Based on Dielectric and Graphene Coating[J]. Chinese Journal of Lasers, 2017, 44(7): 0703019.

参考文献

[1] Goos F, Hnchen H. Ein neuer und fundamentaler versuch zur totalreflexion (in German)[J]. Annalen der Physik, 1947, 436(7/8): 333-346.

[2] Artmann K. Berechnung der seitenversetzung des totalreflektierten strahles (in German)[J]. Annalen der Physik, 1948, 437(1/2): 87-102.

[3] 温积森, 王立刚. 古斯-汉欣位移的发现与发展[J]. 物理, 2016, 45(8): 485-493.

    Wen Jisen, Wang Ligang. The discovery and development of the Goos-Hnchen shift[J]. Physics, 2016, 45(8): 485-493.

[4] Huang Y Y, Dong W T, Gao L, et al. Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab[J]. Optics Express, 2011, 19(2): 1310-1323.

[5] 方振华, 罗春荣, 赵晓鹏. 银树枝左手超材料的反常古斯-汉欣位移[J]. 光学学报, 2015, 35(3): 0316001.

    Fang Zhenhua, Luo Chunrong, Zhao Xiaopeng. Negative Goos-Hnchen shift of left-handed-metamaterials based on the silver dendritic structure[J]. Acta Optica Sinica, 2015, 35(3): 0316001.

[6] 李春芳, 杨晓燕, 段 弢, 等. 电介质膜增强的Goos-Hnchen位移的微波测量[J]. 中国激光, 2006, 33(6): 753-755.

    Li Chunfang, Yang Xiaoyan, Duan Tao, et al. Microwave measurement of dielectric film-enhanced Goos-Hnchen shift[J]. Chinese J Lasers, 2006, 33(6): 753-755.

[7] Soboleva I V, Moskalenko V V, Fedyanin A A. Giant Goos-Hnchen effect and Fano resonance at photonic crystal surfaces[J]. Physical Review Letters, 2012, 108(12): 123901.

[8] Chern R L. Effect of damping on Goos-Hnchen shift from weakly absorbing anisotropic metamaterials[J]. Journal of the Optical Society of America B, 2014, 31(5): 1174-1181.

[9] Wang L G, Chen H, Zhu S Y. Large negative Goos-Hnchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 2005, 30(21): 2936-2938.

[10] Zhao B, Gao L.Temperature-dependent Goos-Hnchen shift on the interface of metal/dielectric composites[J]. Optics Express, 2009, 17(24): 21433-21441.

[11] Qamar S, Zubairy M S. Coherent control of the Goos-Hnchen shift[J]. Physical Review A, 2010, 81(2): 023821.

[12] Yallapragada V J, Ravishankar A P, Mulay G L, et al. Observation of giant Goos-Hnchen and angular shifts at designed metasurfaces[J]. Scientific reports, 2016, 6: 19319.

[13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.

[14] Merano M. Fresnel coefficients of a two-dimensional atomic crystal[J]. Physical Review A, 2016, 93(1): 013832.

[15] Papasimakis N, Luo Z Q, Shen Z X, et al. Graphene in a photonic metamaterial[J]. Optics Express, 2010, 18(8): 8353-8359.

[16] Nikolaenko A E, Papasimakis N, Atmatzakis E, et al. Nonlinear graphene metamaterial[J]. Applied Physics Letters, 2012, 100(18): 181109.

[17] 翟 利, 薛文瑞, 杨荣草, 等. 涂覆石墨烯的电介质纳米并行线的传输特性[J]. 光学学报, 2015, 35(11): 1123002.

    Zhai Li, Xue Wenrui, Yang Rongcao, et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 2015, 35(11): 1123002.

[18] Xiang Y J, Dai X Y, Guo J, et al. Tunable optical bistability at the graphene-covered nonlinear interface[J]. Applied Physics Letters, 2014, 104(5): 051108.

[19] Xu G, Xu Y, Sun J, et al. Tunable and nonreciprocal Goos-Hnchen shifts on reflection from a graphene-coated gyroelectric slab[J]. Physics Letters A, 2016, 380(29): 2329-2333.

[20] Jiang L Y, Wang Q K, Xiang Y J, et al. Electrically tunable Goos-Hnchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonic Journal, 2013, 5(3): 6500108.

[21] Jiang L, Wu J, Dai X, et al. Comparison of Goos-Hnchen shifts of the reflected beam from graphene on dielectrics and metals[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(23): 7025-7029.

[22] Madani A, Entezar S R. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers[J]. Superlattices Microstructures, 2014, 75: 692-700.

[23] Grosche S, Szameit A, Ornigotti M. Spatial Goos-Hnchen shift in photonic graphene[J]. Physical Review A, 2016, 94(6): 063831.

[24] Fan Y C, Shen N H, Zhang F, et al. Electrically tunable Goos-Hnchen effect with graphene in the terahertz regime[J]. Advanced Optical Materials, 2016, 4(11): 1824-1828.

[25] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

[26] Zhan T R, Shi X, Dai Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics: Condensed Matter, 2013, 25(21): 215301.

[27] Luo Z, Tang Z, Xiang Y,et al. Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials[J]. Applied Physics B, 2009, 94(4): 641-646.

[28] Luo Z, Chen M, Liu J,et al. An approach of waveguide mode selection based on the thin-film spatial filters[J]. Optics Communications, 2016, 365: 120-124.

[29] 陈 敏, 万 婷, 王 征, 等. 宽绝对禁带的一维磁性光子晶体结构[J]. 物理学报, 2017, 66(1): 014204.

    Chen Min, Wan Ting, Wang Zheng,et al. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps[J]. Acta Physica Sinica, 2017, 66(1): 014204.

[30] Yariv A. 现代通信光电子学[M]. 第5版. 北京: 电子工业出版社, 2002.

    Yariv A. Optical electronics in modern communications[M]. Fifth edition. Beijing: Publishing House of Electronics Industry, 2002.

[31] Li C F. Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects[J]. Physical Review Letters, 2003, 91(13): 133903.

[32] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Review of Modern Physics, 2009, 81(1): 109.

高明盛, 罗朝明, 周宏敏, 陈敏, 吴健辉. 基于介质和石墨烯涂层的古斯-汉欣位移的精确调控[J]. 中国激光, 2017, 44(7): 0703019. Gao Mingsheng, Luo Zhaoming, Zhou Hongmin, Chen Min, Wu Jianhui. Precise Control of Goos-Hnchen Shift Based on Dielectric and Graphene Coating[J]. Chinese Journal of Lasers, 2017, 44(7): 0703019.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!