中国激光, 2017, 44 (7): 0703019, 网络出版: 2017-07-05   

基于介质和石墨烯涂层的古斯-汉欣位移的精确调控 下载: 504次

Precise Control of Goos-Hnchen Shift Based on Dielectric and Graphene Coating
作者单位
湖南理工学院信息与通信工程学院, 湖南 岳阳 414006
摘要
提出了一种基于介质和石墨烯涂层的结构来进行古斯-汉欣位移调控, 利用传输矩阵法研究了该结构参数对共振角及共振角处反射光的古斯-汉欣位移的影响。数值模拟结果表明, 共振角随介质层厚度的增加逐渐增大, 而随石墨烯费米能级的增加逐渐减小; 古斯-汉欣位移大小随介质层厚度的增加先增加后减小, 而随石墨烯费米能级的增加单调减小。介质层厚度对共振角的影响较为显著, 而石墨烯费米能级对古斯-汉欣位移的影响较为显著。
Abstract
A structure based on the dielectric and graphene coating is presented to control the Goos-Hnchen shift. The influence of structural parameters on the resonance angle and the Goos-Hnchen shift near the resonance angle are studied with the transfer matrix method. The numerical simulation results show that the resonance angle increases with the increase of the dielectric layer thickness, but decreases with the increase of the graphene Fermi energy. The magnitude of the Goos-Hnchen shift increases first and then decreases with the increase of the dielectric layer thickness, while decreases monotonically with the increase of the graphene Fermi energy. The influence of the dielectric layer thickness on the resonance angle is more significant, while the influence of the graphene Fermi energy on the Goos-Hnchen shift is more significant.
参考文献

[1] Goos F, Hnchen H. Ein neuer und fundamentaler versuch zur totalreflexion (in German)[J]. Annalen der Physik, 1947, 436(7/8): 333-346.

[2] Artmann K. Berechnung der seitenversetzung des totalreflektierten strahles (in German)[J]. Annalen der Physik, 1948, 437(1/2): 87-102.

[3] 温积森, 王立刚. 古斯-汉欣位移的发现与发展[J]. 物理, 2016, 45(8): 485-493.

    Wen Jisen, Wang Ligang. The discovery and development of the Goos-Hnchen shift[J]. Physics, 2016, 45(8): 485-493.

[4] Huang Y Y, Dong W T, Gao L, et al. Large positive and negative lateral shifts near pseudo-Brewster dip on reflection from a chiral metamaterial slab[J]. Optics Express, 2011, 19(2): 1310-1323.

[5] 方振华, 罗春荣, 赵晓鹏. 银树枝左手超材料的反常古斯-汉欣位移[J]. 光学学报, 2015, 35(3): 0316001.

    Fang Zhenhua, Luo Chunrong, Zhao Xiaopeng. Negative Goos-Hnchen shift of left-handed-metamaterials based on the silver dendritic structure[J]. Acta Optica Sinica, 2015, 35(3): 0316001.

[6] 李春芳, 杨晓燕, 段 弢, 等. 电介质膜增强的Goos-Hnchen位移的微波测量[J]. 中国激光, 2006, 33(6): 753-755.

    Li Chunfang, Yang Xiaoyan, Duan Tao, et al. Microwave measurement of dielectric film-enhanced Goos-Hnchen shift[J]. Chinese J Lasers, 2006, 33(6): 753-755.

[7] Soboleva I V, Moskalenko V V, Fedyanin A A. Giant Goos-Hnchen effect and Fano resonance at photonic crystal surfaces[J]. Physical Review Letters, 2012, 108(12): 123901.

[8] Chern R L. Effect of damping on Goos-Hnchen shift from weakly absorbing anisotropic metamaterials[J]. Journal of the Optical Society of America B, 2014, 31(5): 1174-1181.

[9] Wang L G, Chen H, Zhu S Y. Large negative Goos-Hnchen shift from a weakly absorbing dielectric slab[J]. Optics Letters, 2005, 30(21): 2936-2938.

[10] Zhao B, Gao L.Temperature-dependent Goos-Hnchen shift on the interface of metal/dielectric composites[J]. Optics Express, 2009, 17(24): 21433-21441.

[11] Qamar S, Zubairy M S. Coherent control of the Goos-Hnchen shift[J]. Physical Review A, 2010, 81(2): 023821.

[12] Yallapragada V J, Ravishankar A P, Mulay G L, et al. Observation of giant Goos-Hnchen and angular shifts at designed metasurfaces[J]. Scientific reports, 2016, 6: 19319.

[13] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.

[14] Merano M. Fresnel coefficients of a two-dimensional atomic crystal[J]. Physical Review A, 2016, 93(1): 013832.

[15] Papasimakis N, Luo Z Q, Shen Z X, et al. Graphene in a photonic metamaterial[J]. Optics Express, 2010, 18(8): 8353-8359.

[16] Nikolaenko A E, Papasimakis N, Atmatzakis E, et al. Nonlinear graphene metamaterial[J]. Applied Physics Letters, 2012, 100(18): 181109.

[17] 翟 利, 薛文瑞, 杨荣草, 等. 涂覆石墨烯的电介质纳米并行线的传输特性[J]. 光学学报, 2015, 35(11): 1123002.

    Zhai Li, Xue Wenrui, Yang Rongcao, et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 2015, 35(11): 1123002.

[18] Xiang Y J, Dai X Y, Guo J, et al. Tunable optical bistability at the graphene-covered nonlinear interface[J]. Applied Physics Letters, 2014, 104(5): 051108.

[19] Xu G, Xu Y, Sun J, et al. Tunable and nonreciprocal Goos-Hnchen shifts on reflection from a graphene-coated gyroelectric slab[J]. Physics Letters A, 2016, 380(29): 2329-2333.

[20] Jiang L Y, Wang Q K, Xiang Y J, et al. Electrically tunable Goos-Hnchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonic Journal, 2013, 5(3): 6500108.

[21] Jiang L, Wu J, Dai X, et al. Comparison of Goos-Hnchen shifts of the reflected beam from graphene on dielectrics and metals[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(23): 7025-7029.

[22] Madani A, Entezar S R. Surface polaritons of one-dimensional photonic crystals containing graphene monolayers[J]. Superlattices Microstructures, 2014, 75: 692-700.

[23] Grosche S, Szameit A, Ornigotti M. Spatial Goos-Hnchen shift in photonic graphene[J]. Physical Review A, 2016, 94(6): 063831.

[24] Fan Y C, Shen N H, Zhang F, et al. Electrically tunable Goos-Hnchen effect with graphene in the terahertz regime[J]. Advanced Optical Materials, 2016, 4(11): 1824-1828.

[25] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.

[26] Zhan T R, Shi X, Dai Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics: Condensed Matter, 2013, 25(21): 215301.

[27] Luo Z, Tang Z, Xiang Y,et al. Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials[J]. Applied Physics B, 2009, 94(4): 641-646.

[28] Luo Z, Chen M, Liu J,et al. An approach of waveguide mode selection based on the thin-film spatial filters[J]. Optics Communications, 2016, 365: 120-124.

[29] 陈 敏, 万 婷, 王 征, 等. 宽绝对禁带的一维磁性光子晶体结构[J]. 物理学报, 2017, 66(1): 014204.

    Chen Min, Wan Ting, Wang Zheng,et al. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps[J]. Acta Physica Sinica, 2017, 66(1): 014204.

[30] Yariv A. 现代通信光电子学[M]. 第5版. 北京: 电子工业出版社, 2002.

    Yariv A. Optical electronics in modern communications[M]. Fifth edition. Beijing: Publishing House of Electronics Industry, 2002.

[31] Li C F. Negative lateral shift of a light beam transmitted through a dielectric slab and interaction of boundary effects[J]. Physical Review Letters, 2003, 91(13): 133903.

[32] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Review of Modern Physics, 2009, 81(1): 109.

高明盛, 罗朝明, 周宏敏, 陈敏, 吴健辉. 基于介质和石墨烯涂层的古斯-汉欣位移的精确调控[J]. 中国激光, 2017, 44(7): 0703019. Gao Mingsheng, Luo Zhaoming, Zhou Hongmin, Chen Min, Wu Jianhui. Precise Control of Goos-Hnchen Shift Based on Dielectric and Graphene Coating[J]. Chinese Journal of Lasers, 2017, 44(7): 0703019.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!